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Abstract 

In this dissertation, we present the parallel algorithms necessary to run domain decomposed 

Monte Carlo particle transport on large numbers of processors (millions of processors).  Previous 

algorithms were not scalable, and the parallel overhead became more computationally costly 

than the numerical simulation.  The main algorithms we consider are:  

• Domain decomposition of constructive solid geometry: enables extremely large 

calculations in which the background geometry is too large to fit in the memory of a 

single computational node. 

• Load Balancing: keeps the workload per processor as even as possible so the calculation 

runs efficiently. 

• Global Particle Find: if particles are on the wrong processor, globally resolve their 

locations to the correct processor based on particle coordinate and background domain. 

• Visualizing constructive solid geometry, sourcing particles, deciding that particle 

streaming communication is completed and spatial redecomposition. 

These algorithms are some of the most important parallel algorithms required for domain 

decomposed Monte Carlo particle transport.  We demonstrate that our previous algorithms 

were not scalable, prove that our new algorithms are scalable, and run some of the algorithms 

up to 2 million MPI processes on the Sequoia supercomputer. 
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1. Introduction 

This dissertation investigates how to design scientific computer modeling software to run 

efficiently on a very large supercomputer.  Let us first consider the case of a single, serial 

computer that has just one processor.  Given a scientific modeling program, the user typically 

desires simulations to run faster.  As new computers get faster, the simulation automatically runs 

faster when run on the new computers.  In this case, there is no need to rewrite any of the 

program, it just runs faster because the computer hardware gets faster.   

Now let us consider a parallel computer that has more than one processor.  The computer 

simulation has to be specifically written to divide the work among the processors, do some 

independent work, and combine the results at the end to obtain the final answer.  As the number 

of processors on a new parallel computer increases, the simulation runs faster since the work is 

divided among more processors.  Again, we do not have to rewrite any of the computer program 

to take advantage of the bigger supercomputers that have more processors.  

But this mode of parallel scalability eventually brakes down.  Eventually the overhead of 

dividing up the work among processors and communicating results back and forth to get the total 

answer, takes longer than the numerical computation portion of the calculation.  When the 

number of processors gets too large, the management process becomes more expensive than the 

actual work.  An analogy might be a supervisor who has two direct reports.  In this case, the 

supervisor instructs each worker who in turn reports back to him.  The supervisor then combines 

their results.  This model may work for tens of direct reports.  Now imagine the supervisor 

having one million direct reports!  Clearly, there is not enough time in the day to talk to each 

worker individually and to combine their results.  One solution is to impose a type of tree 

hierarchy, so that each supervisor only deals with a handful of direct reports.  This same strategy 
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works with computer algorithms.  Imposing a tree structure on top of how the work is divided up 

and combining the results can significantly speed up the simulation. 

 The total “management overhead” time now becomes proportional to the depth of the 

tree.  The depth of the tree is how many steps it takes to send a message to every employee if it 

comes from the top level CEO and each person delivers the message only to their direct reports.  

The depth of the tree is proportional to the logarithm of the total number of employees.  The 

logarithm function grows very slowly, so the management overhead grows very slowly.  If the 

number of employees is doubled, then only one extra layer is added at the bottom of the tree.  

This tree-based approach is much more efficient than one CEO having to deal with all of the 

employees.  In that case, doubling the number of employees doubles the amount of management 

overhead, which is too costly to scale to large numbers of employees. 

In order to run physics simulations on new supercomputers with hundreds of thousands 

or millions of processors, care must be taken to implement scalable algorithms. This means the 

algorithms must continue to perform well as the processor count significantly increases.  This 

requirement rules out “global algorithms” that have a view of some information from every 

processor.  Global algorithms need to be replaced with local algorithms that only communicate 

with nearest neighbors or some other small set of processors.  In this dissertation, we examine 

some of the scalable algorithms necessary for Monte Carlo particle transport.  Monte Carlo 

particle transport is a type of physics simulation that statistically models “in flight” particles 

interacting with a background material.  The algorithm is called “Monte Carlo” in reference to 

the Monte Carlo Casino in Monaco and was first invented in the late 1940s at Los Alamos 

National Laboratory [1].  Monte Carlo uses random numbers to sample from statistical 

distributions to model the random nature of particle interactions [2], [3].  
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On a supercomputer that has up to 10,000 processors, it is feasible to both store data that 

is proportional to the total number of processors and write an algorithm whose run time is 

proportional to the number of processors.  These algorithms consume a small enough fraction of 

the overall compute time to be in the “noise” and work quite well.  Now that supercomputers 

may have up to millions of processors, these algorithms can become even more expensive (time-

consuming) than the numerical computation of an application.  So we must revisit the algorithms 

that have a strong dependence on the total number of processors.  For related information, see 

[4]. 

 Table 1 shows some of the modern supercomputers from Lawrence Livermore National 

Laboratory (LLNL).  Efficient use of the supercomputers with lower processor counts such as 

Blue, White and Purple could be achieved without implementing scalable algorithms.  But for 

BlueGene/L [5], Dawn [6] and Sequoia [7], the processor counts are so large that they require 

scalable algorithms to use efficiently. 

Table 1: Modern supercomputing history at LLNL. 

Date Computer Number of Processors 

1998 Blue 5,856 
2001 White 8,192 

2005 Purple 12,544 

2004 BlueGene/L 65,636 

2009 Dawn 147,456 

2012 Sequoia 1,572,864 
 

We define an algorithm to be scalable if its runtime is 𝑂(𝑁𝜀)  ∀ 𝜀 > 0, where N is the 

number of processors.  This definition rules out algorithms whose runtime is proportional to the 

10 
 



number of processors, and even rules out runtimes proportional to √𝑁 or  √𝑁3 .  Examples of 

algorithms that meet this definition have runtimes proportional to log(N) or powers of  log(N).  

However, a practical problem exists with this definition.  This definition is valid for large N, as 

N→∞, but we always have a finite number of processors.  At a particular processor count, an 

algorithm with run time proportional to log(N) may in fact take longer than an algorithm whose 

runtime is proportional to √𝑁.  So the question of whether an algorithm is scalable is subjective 

to some extent and depends on how much slowdown is acceptable, as the processor count 

increases. 

When considering weak scaling problems for which there is constant work per processor, 

a scalable algorithm’s runtime will be relatively flat as a function of processor count.  See Figure 

1 for sample graphs of non-scalable (on the left) and scalable (on the right) results.  The non-

scalable graph on the left shows an algorithm with a run time that is proportional to the number 

of processors and increases significantly with the number of processors.  The scalable example 

on the right shows an algorithm with a run time that is proportional to the log of the number of 

processors and is relatively flat as the number of processors increases.  

 

     

Figure 1: Runtime of non-scalable (left) and scalable (right) algorithms. 
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A common approach to making an algorithm scalable is to introduce some type of tree-

based communication structure.  If in the original algorithm all of the processors communicated 

with the 0th ranked processor, this algorithm will not scale.  To make the algorithm scalable, it 

would be converted to send messages up and down a tree.  Each processor then has to 

communicate only with a fixed number of other processors, for example one parent and two 

children in a binary tree.  As the number of processors increases, the depth of the tree increases, 

but very slowly, proportional to log(N).  So the cost of sending messages up and down the tree is 

O(log(N)), which is scalable. 

1.1.  Mercury Monte Carlo Particle Transport Code  

 Mercury [8], [9], [10], [11], [12], [13], [14] is LLNL’s modern Monte Carlo particle 

transport code.  Mercury solves static and dynamic neutron transport problems and eigenvalue 

criticality problems.  It also has gamma transport and charged particle transport physics.  

Mercury is written in C++, has a python [15], [16], [17], [18] user interface, is massively 

parallel, uses MPI [19], [20] for distributed memory parallelism and OpenMP [21] for shared 

memory parallelism.  Mercury uses the Silo [22] and HDF5 [23] I/O libraries for graphics and 

restart files.  Mercury is parallelized via domain decomposition and domain replication and 

allows for a hybrid parallelization combining MPI, OpenMP, domain decomposition, and 

domain replication. 

 Mercury solves the linear Boltzmann particle transport equation for neutrons: 
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This equation has a seven-dimensional phase space: three spatial: 𝑟 = (𝑥, 𝑦, 𝑧), two directional: 

Ω =(θ, φ), one energy: E, and one time: t.  Each simulation particle carries these seven attributes 

along with a weight that represents the number of physical particles.  Simulation particles carry 

several other attributes to facilitate the computation.  The Monte Carlo method does not 

discretize this equation using finite differences or finite elements; instead it uses random 

numbers to sample from distributions to statistically simulate the particle interactions.  The 

background geometry of the problem is specified using Constructive Solid Geometry (CSG) 

which will be described in detail in Chapter 2. 

We have run Mercury up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia 

supercomputer and observed scalable results that agree with our theoretical predictions. In this 

dissertation, we will explain why previous Mercury algorithms were not scalable and prove why 

the new algorithms are scalable. 

 

1.2. Related Work 

The Radiation Safety Information Computational Center (RSICC) is one of the world’s 

leading resources for a broad range of the best available nuclear computational tools and services 

[24].  For an overview of Monte Carlo codes managed by RSICC, see the paper [25]; Mercury 

has a similar set of features but is not currently released under RSICC.  MCNP (Monte Carlo N-

Particle) [26] is the most well known related Monte Carlo particle transport code.  MCNP has 

been developed for decades at Los Alamos National Laboratory.  MCNP has a very large user 

base and has been thoroughly verified and validated.  MC21 [27] is another modern Monte Carlo 

transport code being developed jointly at the Knolls Atomic Power Laboratory and the Bettis 

Laboratory.  GEANT (for GEometry ANd Tracking) is a modern Monte Carlo code developed at 
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CERN [28]. TART [29] and COG [30] are legacy Monte Carlo particle transport codes 

developed at Lawrence Livermore National Laboratory, both written in Fortran. OpenMC [31] is 

a modern Monte Carlo transport code originally developed at the Massachusetts Institute of 

Technology.  The code also addresses parallel challenges faced with large processors counts, but 

has a different set of constraints, see [32].  For reproducibility, each run of OpenMC processes 

particles in exactly the same order. Mercury, on the other hand, does not obey that constraint 

which enables a more efficient load balancing algorithm as discussed in Chapter 4.  Serpent [33] 

is a continuous-energy Monte Carlo reactor physics burn up calculation code developed at VTT 

Technical Research Centre of Finland .  Table 2 below summarizes some of the related Monte 

Carlo particle transport codes.  Many other codes exist, so this list is not exhaustive. 
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Table 2: Table of related Monte Carlo particle transport code. 

Code Developed At Comments 
MCNP Los Alamos National Laboratory Large user base, lots of verification and 

validation.  Legacy architecture.  
TART Lawrence Livermore National 

Laboratory  
Legacy MC code at LLNL. 

COG Lawrence Livermore National 
Laboratory 

Legacy MC code at LLNL. 

MC21 Knolls Atomic Power Laboratory 
and the Bettis Laboratory 

Modern MC code. 

Serpent VTT Technical Research Centre of 
Finland 

MC reactor physics burn up code. 

GEANT CERN High energy MC code. 
OpenMC Massachusetts Institute of 

Technology 
Modern MC code.  Written in FORTRAN. 

Mercury Lawrence Livermore National 
Laboratory 

Modern MC code, written in C++ with a 
python user interface, scalable. 

 

1.3.  Overview of this Dissertation 

In Chapter 2 we describe how to domain decompose Constructive Solid Geometry (CSG) for 

Monte Carlo particle transport.  Typically CSG is replicated on every processor and the particles 

are distributed over the processors.  Replication is generally preferred over domain 

decomposition since it is easier to implement (particle streaming communication does not have 

to be implemented) and can be faster.  But replication limits the total geometry size to be small 

enough to fit in memory of a single compute node.  Domain decomposition solves this problem 

by distributing the geometry over processors.  This decomposition enables truly large geometry 

models, limited only by the amount of memory in the entire supercomputer.  Domain 

decomposition has been used to run a problem with 5.6 million cells, and visualize a model of 

the city of Boston with 89 million cells. 
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Chapter 3 describes a domain decomposed load balancing algorithm.  This novel algorithm 

has significantly improved the performance of almost all of our calculations.  Some aspects of 

this algorithm are not scalable and remain as future areas of research.  The algorithm has been 

run successfully up to 65,536 processors. 

Chapter 4 describes a novel load balancing algorithm that we prove has O(log(N)) 

communication steps, where N is the number of processors.  We present a scaling study of this 

algorithm up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer.  The 

observed performance is in excellent agreement with our theoretical predictions. 

Chapter 5 examines the problem of globally resolving particle locations to the correct 

processor.  Particles may be sourced (created) on a processor that does not own the background 

geometry for the particle’s coordinate.  The particles must be communicated to the correct 

processor before they can track through the background geometry.  This chapter shows how we 

create a hypercube network to efficiently communicate particles to the correct processor. 

Chapter 6 considers the problem of visualizing constructive solid geometry. We show how 

Mercury is coupled to VisIt through both files and an inline interface for visualizing a calculation 

as it is running.  We implement several methods for converting CSG to a mesh, where the mesh 

is then used to either visualize the CSG or used directly for the particle transport calculation.  

Mercury is also used directly as a ray-caster to visualize CSG directly. 

Finally Chapter 7 examines other parallel algorithms required for Monte Carlo particle 

transport.  First we consider sourcing particles scalably.  We implement scalable particle 

sourcing by uniformly distributing source particles over all of the processors.  This approach may 

mean that some particles are sourced on the wrong processor.  We then simply rely on the global 
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particle find algorithm from Chapter 5 to communicate particles to the correct processor.  We 

also run a domain decomposed test problem on 221 = 2,097,152 MPI processes on Sequoia 

demonstrating the scalability of the particle streaming communication and the “test for done” 

algorithm.  Then we demonstrate the flexibility of the geometry available in Mercury by tracking 

to arbitrary surfaces defined by C-functions written in the user’s input.  Finally we investigate 

spatial redecomposition and domain-to-processor assignment.  We show that both of these 

algorithms can have a large impact on the efficiency of a calculation, and more research should 

be performed to further understand and optimize these algorithms. 
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2 Domain Decomposed Constructive Solid Geometry 

Constructive Solid Geometry (CSG) is a way of combing surfaces to form cells, and then 

using mathematical set operations such as union, intersection and negation to aggregate cells to 

form more complex cells.  The CSG forms the background geometry that particles interact with.  

The user specifies the material properties of each cell, such as which isotopes is it made of, the 

density of the material and the temperature of the material.  CSG is also known as Combinatorial 

Geometry (CG). 

Domain decomposition has been implemented in Mercury, a CSG Monte Carlo neutron 

transport code [34], [35].  Previous methods to parallelize a CSG code relied entirely on particle 

parallelism [36].  In our approach, we distribute the geometry as well as the particles across 

processors.  Domain decomposition enables calculations whose geometric description is larger 

than what could fit in the memory of a single processor.  In addition to enabling very large 

calculations, we show that domain decomposition can speed up calculations compared to particle 

parallelism alone.  We also show results of a calculation of the proposed Laser Inertial-

Confinement Fusion-Fission Energy (LIFE) facility, which has 5.6 million CSG cells. 

2.1 Introduction 

Previous methods of parallelizing a CSG Monte Carlo neutron transport code have 

implemented a method know as particle parallelism, meaning that the geometry information is 

redundantly stored on all of the processors, while the particle workload is divided among the 

processors.  This method is “embarrassingly parallel” in the sense that the processors can run 

independently of each other, until the end of the calculation, when a total answer is calculated 

that is the sum of all of the processors’ results. 
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 Particle parallelism is in contrast to domain decomposition, where the geometry is 

partitioned into domains which are assigned to processors.  As a particle streams from one 

domain to another, it must be communicated from one processor to another.  The technique of 

domain decomposition is commonly used in parallel finite-difference or finite-element physics 

simulations running on a computational mesh.  Well known techniques exist for partitioning a 

mesh into domains.  The contrast here is that we do not have an underlying “mesh”, we have a 

CSG (surfaces and cells) representation of the geometry. 

 We calculate a bounding box for every CSG surface and cell, and use the bounding box 

to decide if a given CSG surface or cell should exist on a given domain.  The user specifies a 

Cartesian domain decomposition of their problem by defining the positions of decomposition 

planes normal to the three coordinate axes.  Thus only local geometry information is stored on 

each domain producing a scalable algorithm. 

 Alme, Rodrigue, and Zimmerman [37] also investigated domain decomposition and load 

balancing for Monte Carlo applications.  Their work addressed domain decomposition on a mesh 

as opposed to constructive solid geometry that we consider here.  They also considered static 

load balancing in which a work estimate is used to determine the number of times a domain is 

replicated relative to the others.  In Chapter 3, we will consider dynamic load balancing in which 

the number of times a domain is replicated may change each cycle in response to the particle 

workload. 

The remainder of this chapter is organized as follows.  Section 2.2 describes constructive 

solid geometry and how Mercury uses CSG to model background geometry.  Section 2.3 

delineates some distinctions between mesh domain decomposition vs. CSG domain 
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decomposition.  Section 2.4 describes the algorithms necessary to implement domain 

decomposition of CSG.  Section 2.5 shows the results of running a criticality of the world test 

problem on various numbers of domains and getting statistically equivalent results, 

demonstrating the correctness of the domain decomposition implementation.  Section 2.6 

describes a LIFE test problem that is so large that domain decomposition is required. Section 2.7 

describes an 89 million cell test problem of the city of Boston that we visualize using domain 

decomposition.  Finally Section 2.8 discusses the conclusions of this chapter. 

2.2 Constructive Solid Geometry 

In our implementation of CSG, we implement quadric surfaces, which are at most 2nd 

order surfaces, such as planes, spheres, ellipsoids, cylinders, cones, etc.  We also support general 

4th order quartic surfaces, the most common being the torus.  These surfaces are stored as a list of 

the coefficients in the implicit equation satisfied by the points on the surface: 

∑
≥

≤++≤

=−−−=

0,,
40

000 0)()()(),,(
kji

kji

kji
ijk zzyyxxazyxf  

For example, a plane parallel to the x-axis is represented as 
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where 0,1 000002020200 <=== aaaa , and all the other coefficients are 0. 
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The surfaces are used to define volumes by considering the points such that 

}0),,(:),,{( <zyxfzyx  (for example, inside of a sphere) and }0),,(:),,{( >zyxfzyx  (for 

example, outside of a sphere).  The volumes are then combined using logical operations such as 

AND, OR, NOT to form more complex volumes.  We call the volumes CSG cells or cells.   

Example.  Here we define two spherical surfaces, sphere1 and sphere2.  We then define cell1 to 

be: 

cell1 = insideOf(sphere1) AND outsideOf(sphere2) 

See Figure 2 to see what cell1 looks like. 

 

Figure 2: A simple example of creating a CSG cell that is inside the sphere1 surface and 
outside the sphere2 surface. 

 

Using only these simple primitives, one can construct very complicated geometries.  For 

example, in the Figure 3 below, the National Ignition Facility (NIF) (explained in Section 2.6) 

target chamber and support structures are modeled with CSG. 

sphere1 sphere2 

cell1 
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Figure 3: The NIF target chamber and support structures as modeled with CSG. 
 

2.3 Domain Decomposition: Mesh vs. CSG 

We would like to draw some distinctions between mesh domain decomposition and CSG 

domain decomposition.  In the case when the underlying discretization of the geometry is mesh-

based, part of the description of the mesh is the connectivity of the mesh cells.  If the mesh is 

topologically Cartesian, then the connectivity of the mesh is implicitly known by using indexing 

and striding to move in the i, j, or k directions.  If the mesh is unstructured, then a data structure 

is required that provides the face neighbors of every face of every zone.  This data structure 

creates an underlying graph that is partitioned into domains.   

Let G=(V,E) where  

V = {the set of cells in the problem}, and  

E={(c1, c2) : if cell c1 is a face neighbor of cell c2.}   

 In the case that the underlying discretization of the problem geometry is CSG-based, then 

no connectivity information about the adjacency of any of the CSG cells is known.  As a particle 
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exits a bounding surface of one cell and enters an adjacent cell, (a priori) the particle does not 

know what cell it will enter.  The algorithm dynamically learns the connectivity of the cells as 

particles track through the cells.  The first time a particle exits a cell by crossing a bounding 

surface, the algorithm loops over all other cells and asks the question “is this point in the given 

cell”.  Then the adjacent cell is saved in a connectivity table to be checked on subsequent particle 

surface crossings. 

 Thus at initialization time, when it is time to do the domain decomposition, we do not 

know any connectivity information about the CSG cells.  No underlying cell-face-neighbor 

adjacency graph exists, so we cannot use graph partitioning to do the domain decomposition.  

Instead we use a technique that relies on the geometric position and extent of each cell by 

calculating a bounding box for each cell.  The domains are themselves “boxes”, since they are 

created from the Cartesian product of boundary planes normal to each of the three coordinate 

axes.  As a result, the test for membership of a cell within a domain is a simple axis-aligned box-

box intersection test.  See Table 3 for a comparison of Mesh vs. CSG domain decomposition. 
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Table 3: This table compares the information at hand and underlying algorithms for mesh-
based vs. CSG-based domain decomposed particle tracking. 
  Mesh CSG 

Cell Boundary 
Crossing 

Adjacent cells 
know, cell 
faces are 1-
to-1. 

Must check adjacent 
candidate cells, do not 
explicitly know adjacency. 

Domain Boundary 
Crossing 

Adjacent 
domains known. 

Adjacent domains known. 
(new) 

Input Input 
description is 
already domain 
decomposed. 

Must decide if each 
surface/cell should be 
assigned to each 
processor.  (Need to 
domain decompose user 
input.) (new) 

Output (graphics) Each processor 
writes its 
domains.   A 
master file 
describes how 
to assemble 
the pieces. 

Each processor writes the 
portion of space it owns, 
explicitly introducing 
domain boundary surfaces 
for cells on domain 
boundaries.  A master file 
describes how to assemble 
the pieces. (new) 

 

Figure 4 shows an example of CSG domain decomposition: 

Upper left: The user defines the global CSG problem, without regard to domain decomposition.   

Upper right: The user defines the Cartesian domain decomposition by specifying the positions of 

axis aligned planes normal to the three coordinate axes.  The code automatically calculates 

bounding boxes for all of the cells which are used to test for intersection with each domain.  For 

example, one small orange sphere has a bounding box that intersects both Domain 0 and Domain 

1, so that cell is assigned to both domains. 

Lower left: The code automatically creates Domain 0, and assigns the correct cells to it. 

Lower right: The code automatically creates Domain 1, and assigns the correct cells to it. 
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User defines global CSG problem.  User defines Cartesian domain decomposition. 

 

     Domain 0.                  Domain 1. 

Figure 4: Illustration of CSG domain decomposition. 
Figure 5 shows CSG cells colored by domain.  This problem is decomposed into 16 

domains.  We see examples of cells that are on 2 adjacent domains, part of the cell is one color 

(for one domain) and the other part of the cell is another color (for the other domain the cell is 

on). 
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Figure 5: This problem has 16 domains, the CSG cells are colored by domain number. 

2.4 Domain Decomposition of CSG 

We started with an existing CSG Monte Carlo transport code that already had mesh 

domain decomposition.  We leveraged the particle streaming communication already 

implemented in the mesh domain decomposition, to use with the new CSG domain 

decomposition.  Particle streaming communication is the MPI communication that happens 

when particles cross a domain boundary and need to be sent to an adjacent domain on another 

processor to continue tracking on the other processor. 

2.4.1 What is Distributed Across Domains 

 As the geometric description of a problem gets larger and larger, the following lists of 

data can grow arbitrarily long: 

— List of surfaces. 
— List of surfaces that define a cell. 
— List of cells. 
— List of templated (cloned) surfaces and cells. 

 
As a result, we need a way to distribute this data across processors. 

Every object in a CSG problem is defined by operations on surfaces, so the total number 

of surfaces can be very large.  Rather than storing the entire list of surfaces redundantly on every 

processor, we must only store the local surfaces whose bounding box intersects the bounding 
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box of a domain.  The same is true for the CSG cells in the problem: each processor only stores 

local cells according to the portion of space that it owns. 

Mercury has a user interface feature called templates which is a way of dealing with 

repeated structures.  A user defines a template to be a list of surfaces and cells, and then 

instantiates the template as many times as they would like, each instantiation having a different 

translation and/or rotation.  For example, a user could create a template of a “house” and then 

instantiate and translate a house template several times to create a neighborhood.  This list of 

templates can also get very large, so we calculate bounding boxes for templates and only 

instantiate them on domains whose bounding box intersects the template’s bounding box. 

2.4.2 Scalability Issues 

 In the case of a mesh, the initial geometry conditions come from a mesh generator and 

are already domain decomposed into separate files.  Domains are assigned to processors, and 

each processor only knows about its local domains.  No single processor ever knows about the 

global description of the geometry.  This situation is in contrast to the CSG, where a user must 

setup the problem geometry using input commands that define all of the surfaces and cells for 

the entire problem.  Part of the domain decomposition algorithm takes the global CSG problem 

description, and each processor filters out parts of the geometry that it does not own. 

 The scalability issues occur only at initialization time and are: 

• The entire CSG input text file must be read into memory at once. 

• The entire list of surfaces/cells is read in, then a surface/cell is kept on a domain only if 

the surface’s/cell’s bounding box intersects the domain’s bounding box.  
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• The entire list of surfaces that define a cell are read in, then only the surfaces that 

intersect the domain that the cell is on are kept. 

2.4.3 Scalability Solutions 

 After initialization, each domain only stores local information; hence the algorithm is 

scalable.  The only problem we have to solve is “How do we initialize the CSG geometry locally, 

so each processor only has to deal with local geometry and not all of the geometry?” 

We could treat CSG input similar to how mesh geometry is treated: the geometry is 

decomposed into separate files and each processor only deals with the domains that are assigned 

to it.  We have not yet implemented this solution.  This has the disadvantage of requiring more 

work of the user.  The user would have to split up their CSG input file into several files, each file 

containing geometry in some specified bounding box. 

If the large cell count arises due to repeated hierarchical structures, we achieve scalability 

through the input “template” mechanism.  For example, let’s say we want to model a city made 

of 1,000 houses.  We create a template of a house, which has let’s say 2,500 cells.  Each CSG 

cell requires about 7 Kilobytes of memory.  So the total memory requirement is: 

(1,000 houses/city) * (2,500 cells/house) * (7KB/cell) = 17.5GB/city. 

17.5GB is more memory than could typically fit on any single processor.  Using domain 

decomposition, we can distribute the geometry across processors and run the entire problem.  

Input templates are only instantiated on processors that contain domains that intersect the 

template’s bounding box, so we have good input scalability using input templates. 
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2.4.4 Algorithms: Calculating a Cell’s Bounding Box 

We need to calculate a bounding box for both CSG surfaces and cells.  Our surfaces are 

typically quadric surfaces (although we do support 4th order surfaces), specified by coefficients 

aijk, such that  i,j,k ≥0 and 0 ≤ i+j+k ≤ 4; and a translation (x0, y0, z0).  These surfaces are created 

from user input, where the user specifies the type of surface:  

Plane_X, Plane_Y, Plane_Z, Plane, Sphere, Ellipsoid, Cylinder_X, Cylinder_Y, Cylinder_Z, 

Cylinder, Cone_X, Cone_Y, Cone_Z, Cone, etc.   

In addition to storing the surface coefficients and translation, we also store an enumerated 

type describing the type of the surface.  Given the type of the surface, we can calculate its 

bounding box.  For example, a plane normal to the X-axis, has a surface equation  

0000 =+ ax  

We store axis aligned bounding boxes which are specified by the minimum and 

maximum coordinates, in this case 

Min = (-a000, -∞, -∞)  Max = (-a000, ∞, ∞) 

Note that we allow for infinite extent in any or all of the coordinate directions.  In particular, we 

could have an unbounded surface (for example, a plane that is not normal to any of the 

coordinate axes).  When an unbounded surface is intersected with any domain, there will always 

be an intersection.  As a result, unbounded surfaces will be assigned to all processors. 

 Another example bounding box calculation is that of a spherical surface that has the 

surface equation: 
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After  every surface has an axis aligned bounding box, we use the bounding box to filter 

out non-local surfaces.  Every domain also has a bounding box, so each domain only keeps the 

surfaces whose bounding boxes intersect the domain’s bounding box. 

 CSG cells are built from surfaces, and we calculate the cell bounding boxes from the 

surface bounding boxes.  A CSG cell is recursively defined as a tree of CSG cells, with an 

operator defined on the children of a parent cell.  There are two binary operators, and, or, and 

one unary operator, not.  We classify CSG cells as either parent or leaf cells.  Parent cells have 

children, leaf cells do not.  Below is pseudo-code for the recursive algorithm to calculate a CSG 

cell’s bounding box: 
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CalculateBoundingBox(cell) 
{ 
  if ( cell.isLeaf ) 
  { 
    if ( cell.UnaryOperator == NOT ) 
    { 
      return InifinteBoundingBox 
    } else { 
      // calculate cell’s bounding box 
      return boundingBox 
    } 
  } 
  else if ( cell.isParent  ) 
  { 
    if ( cell.LeftUnaryOperator == NOT ) 
    { 
      leftBBox  = InifinteBoundingBox 
    } else { 
      leftBBox  = CalculateBoundingBox(cell.leftChild) 
    } 
    if ( cell.RightUnaryOperator == NOT ) 
    { 
      rightBBox = InifinteBoundingBox 
    } else { 
      rightBBox = CalculateBoundingBox(cell.rightChild) 
    } 
 
    if ( cell.operator == OR ) 
    { 
      boundingBox.min = MIN(leftBBox.min, rightBBox.min) 
      boundingBox.max = MAX(leftBBox.max, rightBBox.max) 
      return boundingBox 
    } 
    else if ( cell.operator == AND ) 
    { 
      boundingBox.min = MAX(leftBBox.min, rightBBox.min) 
      boundingBox.max = MIN(leftBBox.max, rightBBox.max) 
      return boundingBox 
    } 
  } 
} 
 

If a cell is bounded, then not(cell) is unbounded; thus we return an infinite bounding box for that 

case. 
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2.4.5 Algorithms: Cell Parsing 

 We implement simple filtering when parsing in the CSG cells from the user input file.  

We have a Cartesian domain decomposition, so every domain has an axis aligned bounding box.  

We use the above bounding box algorithm to calculate a bounding box for each cell.  Each 

domain inserts a cell into its list of cells if the cell’s bounding box intersects with the domain’s 

bounding box.  Cells that straddle domain boundaries will be inserted into multiple domains.  

Below is pseudocode for parsing in cells and assigning them to domains: 

foreach (input file cell) 
{ 
    temp_cell = inputFile.ParseCell(input file cell) 
    CalculateBoundingBox(temp_cell) 
    foreach (domain on this processor) 
    {     
        bool on_domain = domain.IsCellOnDomain(temp_cell) 
        if ( on_domain ) 
        { 
              domain.InsertCell(temp_cell) 
        } 
    } 
} 
 

2.4.6 Algorithms: Locate Coordinate 

One of the most fundamental algorithms that a Monte Carlo transport code must 

implement is: “given a point in space, which cell is the point inside of?” 

The modification to this algorithm for domain decomposition is trivial.  We already have 

an existing algorithm that works for the case of no domain decomposition.  Before using the 

existing algorithm, we implement a domain filtering step.  If the point in question is outside the 

domain in question, that domain can immediately reject ownership of the particle.  If the point in 

question is inside the domain in question, then proceed with the existing algorithm.  To 
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determine if a point is inside of a domain, the algorithm  loops over all of the CG cells in the 

domain, using the cell’s bounding box for a quick rejection test.  If the point is within the cell’s 

bounding box, then we must evaluate the point in the CSG tree and ultimately in the surface 

equations that define the cell. 

The black dot in Figure 6 illustrates the position of a particle.  The particle is outside 

Domain 0, so Domain 0 can immediately reject ownership of the particle.  The particle is inside 

Domain 1, so Domain 1 must proceed as usual to test to see which cell the particle is in.  

 

Figure 6: Illustration of determining the domain and cell of a particle.  The bold black lines 
are domain boundaries.   
Summary of the modified Is-Point-In-Cell algorithm for domain decomposition: 

• During the Is-Point-In-Cell routine, then the algorithm ensures that the input particle is 
inside of the bounding box of the input domain. 

• If that test passes, continue as before. 
• Otherwise the particle is definitely not on the input domain. 

 

2.4.7 Algorithms: Nearest Facet 

 One of the necessary algorithms to implement in a Monte Carlo particle tracking code is 

known as “Nearest Facet”, and is isomorphic to ray tracing.  As a particle is streaming through a 

CSG cell, it will eventually reach the current cell’s boundary and cross into the next cell.  Given 

the particle’s position and direction of flight, the Nearest Facet algorithm calculates the distance 

Domain 0 Domain 1 
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to all of the bounding surfaces of the cell and selects the nearest boundary surface that the 

particle will cross. 

 In the case of domain decomposed CSG, we use the existing nearest facet algorithm with 

one modification.  We must also check to find the distance to the next nearest domain boundary 

interface.  If the nearest domain boundary interface is closer than the nearest cell boundary 

surface, then the particle must be communicated to the adjacent domain. 

 Mercury already had domain decomposition for mesh problems, so the infrastructure to 

buffer and communicate particles among adjacent domains already existed.  After we determine 

that a particle is going to have a CSG domain boundary crossing, the existing infrastructure to 

communicate a particle from its current domain to the adjacent domain is used.  Figure 7 shows 

an illustration of the modified Nearest Facet algorithm. 

 

Figure 7: This example shows that the domain boundary crossing is closer than the nearest 
facet, so the particle will be communicated from one domain to the adjacent domain. 

  

d1 = distance to domain boundary 

d2 = distance to nearest facet. 

d1< d2 so we have a 

Domain Boundary Crossing Event. 

d1 d2 
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2.5 Criticality of the World Test Problem 

This test problem is from a paper written by G. E. Whiteside in 1971: A Difficulty in 

Computing k-effective of the World [38].  The problem definition is a 9 x 9 x 9 lattice of 

Plutonium-239 spheres, each with a radius of 3.90cm, except for the center sphere which has a 

radius of 4.9320cm.  All of the spheres are subcritical, except for the center sphere which is 

supposed to be very close to exactly critical.  The centers of the spheres are 60cm apart, 

surrounded by low density air, which is surrounded by 30cm of water.  See Figure 8 for an 

illustration of the problem setup. 

 

Figure 8: Problem setup of Plutonium Criticality of the World Test Problem. 
 This problem is a Static-K criticality problem with 150 inactive iterations, at which point 

the spatial distribution of the neutrons is stationary and the active portion of the calculation 

begins.  The initial particle source is uniform throughout the spheres.  This problem was run on 

64 processors with 100,000 particles in all cases, and was run on 1, 2, 4, 8, 16, 32 and 64 

domains.  When there are less domains than processors, the domains are replicated over 

processors and the particle workload is distributed over the replicas.  See Table 4 for the results 

of this study.  Due to the statistical nature of the Monte Carlo algorithm and asynchronous 

communication, we get slightly different answers depending on the number of domains, but they 
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are all statistically equivalent.  These results demonstrate that the domain decomposition 

algorithms are functioning correctly. 

Table 4: Keff for various numbers of domains. 
Number of Domains Keff +/- Std Dev 
1 1.000160e+00 +/- 5.023e-3 
2 1.000252e+00 +/- 4.917e-3 
4 1.000313e+00 +/- 5.022e-3 
8 1.000947e+00 +/- 4.848e-3 
16 1.000106e+00 +/- 4.996e-3 
32 1.000610e+00 +/- 5.036e-3 
64 1.000872e+00 +/- 5.010e-3 

2.6 LIFE Problem 

Lawrence Livermore National Laboratory is the home of the National Ignition Facility 

(NIF) [39], the world’s largest and most powerful laser.  One possible application of a NIF-like 

laser is to use it for electricity production.  That is the idea behind the Laser Inertial 

Fusion/Fission Energy (LIFE) [40] engine.  The lasers fire on a tiny target in the center of the 

target chamber.  This causes nuclear fusion, which release neutrons.  The neutrons stream out 

through a fuel layer of fissionable material, which fission and release heat.  The heat is used to 

generate electricity.  LIFE is then a “fusion/fission” nuclear reactor. 

To perform a detailed simulation of this facility requires a very large and complex 

geometric description.  To model only a very small portion of the fuel layer (1º by 1º solid 

angle), requires 5.6 million CSG cells.  To model the full 4π geometry would require billions of 

CSG cells. 

 Figure 9 shows the hierarchical breakdown of the LIFE target chamber: 

(a) The LIFE target chamber, the inner radius is 423 cm, the outer radius is 504 cm. 
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(b) A 1º by 1º wedge of pebbles, which contains 569 pebbles.  Each pebble has a 1cm radius.  

The material between the pebbles is Flibe Coolant, made of Li, Be and F. 

(c) 1 Pebble has a 1cm radius and contains 2445 triso pellets.  The material between the triso 

pellets is Pebble Filler, Carbon. 

(d) Each triso pellet has a radius of 497 µm and has 4 layers.  Layer 1: U238, O, C.  Layer 2 and 

3: C.  Layer 4: C, Si. 

 

(a) LIFE target chamber    (b) 569 Pebbles (c) 1 Pebble  (d) Each triso  

1º by 1º wedge (2445 trisos)  has 4 layers 

Figure 9: This shows the LIFE target chamber and burnable fuel. 
 

The total CSG cell count in the LIFE problem is  

569 pebbles * 2445 trisos * 4 layers = 5.6 Million CSG cells. 

We model the neutron scalar flux distribution as binned energy group data, with 175 

energy groups.  Therefore, each CSG cell requires at least 175 double precision floating point 

numbers, in addition to the data structure fields for describing cells and surfaces.  The memory 
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requirement for the above LIFE problem is 36GB for the geometry memory alone; additional 

memory is required for the Monte Carlo simulation particles.  This is more memory than any one 

processor has, so we must distribute the problem across processors in order to solve it.  We are in 

a unique position to solve extremely large scale, detailed problems like this. 

2.6.1 Preliminary Results 

In this test, we transport particles through only one pebble of the LIFE problem.  One 

pebble is 2445 CSG cells (in this case, 2445 trisos, each triso is only 1 cell instead of 4).  See 

Figure 10 for an illustration of the geometry of this test problem.  The point of this test problem 

is to compare the run times for various numbers of domains. 

 

Figure 10: Pebble with 2445 CSG cells, homogenized trisos. 
Table 5 shows the results of running an external source problem through a pebble with 

2445 cells.  The table has the nice property that if the number of domains is fixed (pick a specific 

row), then then particle transport time decreases as the number of processors increases.  That is 

the “row-wise” analysis of the table.  We want to concentrate on the “column-wise” analysis of 

the table.  That is, for a fixed number of processors, what is the best number of domains to divide 

the problem into?  One might expect that having only 1 domain would run the fastest since the 

calculation is embarrassingly parallel and there is no particle streaming communication.  But 

running with only one domain is not the fastest way to run this problem. 
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Table 5: This shows the time in seconds spent doing particle transport under various 
domain and processor configurations.  

Seconds Spent Doing Particle Transport. 
 1 proc 2 procs 4 procs 8 procs 16 procs 
1 domain 848 427 226 131 74 
2 domains 736 235 148 82 52 
4 domains 668 190 65 34 20 
8 domains 659 162 57 20 12 
16 domains 686 214 113 32 12 
64 domains 732 207 116 37 18 

 

If we look at the first column of data, for 1 processor, we notice that as we increase the 

number of domains, the calculation actually runs faster.  This is due to localization of geometry 

which avoids non-local intersection calculations that are impossible.  Figure 11 compares the 

particle tracking with vs. without domain decomposition: 

(a) Without domain decomposition, a particle in the filler must calculate the distance to 2445 

surfaces, which is very expensive. 

(b) With domain decomposition, a particle in the filler must calculate the distance to only local 

surfaces on this domain, which is significantly faster. 

     

Figure 11: (a) Without domain decomposition    (b) With domain decomposition 
 

Adding more domains to a problem localizes the geometry, but a competing effect of 

calculating the distance to the new domain boundaries is introduced.  For example, on one 

processor, when we go from 16 domains to 64 domains, the particle transport time goes from 686 
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seconds (16 domains) to 732 seconds (64 domains).  In this case, the cost of tracking to more 

domain boundaries outweighed the cost savings of localizing the geometry. 

Next we examine the column of data for 16 processors.  We vary the number of domains 

used to simulate the problem.  Using 1 domain is the traditional way of parallelizing Monte 

Carlo CSG transport calculations: all processors have all of the geometry, and the particle 

workload is divided evenly among the processors (i.e. geometry replication).  The configuration 

of 16 processors and 1 domain takes 74 seconds.  When the calculation is divided into 16 

domains on 16 processors, it only takes 12 seconds, better than a factor of 6 speedup!  This 

speedup again is due to localization of geometry.  When a particle is inside the filler material of 

the pebble, it must calculate the distance to 2445 other surfaces without domain decomposition.  

But with 16 domains, it only has to calculate the distance to roughly 2445/16 = 153 surfaces.  

Competing with the speedup due to localization of geometry is the particle streaming 

communication introduced with domain decomposition (the calculation is slower on 64 

domains).  This example illustrates that domain decomposition can actually be faster than 

particle parallelism, as seen when comparing (16 processors, 1 domain, 74 seconds) to (16 

processors, 16 domains, 12 seconds). 

2.6.2 Dynamic Load Balancing 

The code has an existing dynamic load balancing algorithm that is independent of the 

underlying geometry discretization, i.e. it is independent of the mesh type or CSG (described in 

detail in Chapter 3).  When there are more processors than domains, the code will assign multiple 

processors to domains.  What that means is that the particle workload will be shared evenly 

among the processors working on a particular domain.  This is a hybrid domain 

decomposition/particle parallelism model.  For example, in the problem below, we domain 
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decompose the problem into 16 domains, but run it on 64 processors.  Initially, each domain will 

have 64processors/16domains = 4 processors assigned to it.  After each time step of the 

calculation, the code observes how much work each domain required and then redistributes the 

processors proportional to the workload of each domain. 

Figure 12 shows the number of processors assigned to each domain, at various cycles.  

This test problem had the following properties: 

• 64 processors, 16 domains. 
• The number of processors assigned to each domain is proportional to the domain’s 

workload. 
• Pseudocolor plot of the number of processors working on each domain. 
• Red = 17 processors, Blue = 1 processor. 
• Cycle 0 (leftmost): uniform assignment of 4 processors to each domain. 

 

 

           Cycle 0    Cycle 1       Cycle 2  Cycle 3      Cycle 4 

Figure 12: Dynamic load balancing example. 
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2.7 Boston Problem 

In this test problem, all of the buildings in the city of Boston have been modeled with 

combinatorial geometry, including interior details of the buildings such as floors, walls, steel 

beams, doors, and windows.  This test problem has 89 million CG cells.   All of the surfaces are 

aligned with the coordinate axes, so it is a “cube-like” approximation of all the buildings.  This 

problem was decomposed into 100 domains in the X-direction, 100 domains in the Y-direction 

and 1 domain in the Z-direction for a total of 10,000 domains.  By dividing the geometry into 

10,000 domains, the geometry is localized so that when particles track from the air outside of the 

buildings, they only have to track to the local surfaces in the current domain instead of to every 

surface. This problem was visualized on 128 processors using the Mercury inline ray caster, 

which we describe in section 6.4.5.  

Figure 13 shows 4 different views/magnifications of the Boston test problem.  The roofs 

of the buildings are not shown, which reveals the inside of the rooms of the buildings and a steel 

beam in the center of each room.  These pictures were created with the inline Mercury Ray 

Caster. 
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Figure 13: Ray casting visualization of Boston. 
 

2.8 Conclusions 

 We have implemented a domain decomposition algorithm in the Mercury constructive 

solid geometry Monte Carlo transport code.  This capability allows us to solve large problems 
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that are not possible to solve without domain decomposition due to large memory requirements.  

We have also shown that domain decomposition can be faster than particle parallelism.  

Typically neutron transport problems have a non-uniform distribution of particles in space and 

time, and our existing dynamic load balancer works with the new CSG domain decomposition.  

 We have tried to keep the implementation simple, using the idea of calculating axis 

aligned bounding boxes for surfaces and cells, and then localizing the geometry by intersecting 

bounding boxes and filtering non-local geometry. 

 Domain decomposition enabled Mercury to visualize an 89 million CG model of the city 

of Boston. 
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3. Domain Decomposed Load Balancing 
 

The performance of parallel Monte Carlo transport calculations which use both spatial and 

particle parallelism is increased by dynamically assigning processors to the most worked 

domains.  Since the particle work load varies over the course of the simulation, this algorithm is 

performed each cycle. If load balancing is required, particle communications are initiated in 

order to achieve load balance.  This method has decreased the parallel run time by more than a 

factor of two for certain criticality and sourced calculations shown later in this chapter, see also 

[41] and [42]. 

3.1.  Introduction 
 

Monte Carlo particle transport calculations can be very time consuming, especially for 

problems which require large particle counts or problem geometries with many zones. 

Calculations of this magnitude are normally run in parallel, since a single processor does not 

have enough memory to store all of the particles and/or zones. Several parallel execution modes 

are employed in Mercury. The first mode involves spatial decomposition of the geometry into 

domains, and assignment of individual processors to work on specific domains. This method, 

known as domain decomposition, is a form of spatial parallelism. The second mode, which is the 

easiest way to parallelize a Monte Carlo transport code, is to store the geometry information 

redundantly on each of the processors, and assign each processor a different set of particles. This 

method is termed domain replication, which is a form of particle parallelism. In many cases, 

problems are so large that domain replication alone is not sufficient. For these problems, a 
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combination of both spatial and particle parallelism is employed to achieve a scalable parallel 

solution. 

Since particles often migrate in space and time between different regions of a problem, a 

natural consequence of domain decomposition is that not all spatial domains will require the 

same amount of computational work. Hence, the calculation is load imbalanced. In many 

applications, one portion of the calculation (cycle, iteration, etc.) must be completed by all 

processors before the next phase can commence. If one processor has more work than any of the 

other processors, the less-loaded processors must wait for the most-loaded processor to complete 

its work. 

In an attempt to reduce this form of particle-induced load imbalance, a technique has been 

developed which allows the number of processors assigned to a domain, known as the domain’s 

replication level, to vary in accordance with the amount of work on that domain. This technique 

requires the use of both spatial and particle parallelism. The particles that are located in a given 

spatial domain are divided evenly among the processors assigned to work on that domain, known 

as the domain’s work group. 

Alme, Rodrigue, and Zimmerman [37] also investigated load balancing for Monte Carlo 

applications.  They describe static load balancing in which a work estimate is used to determine 

the number of times a domain is replicated relative to the others.  In this chapter, we consider 

dynamic load balancing where the number of times a domain is replicated may change each 

cycle in response to the particle workload. 

This chapter describes a dynamic load balancing algorithm which minimizes the 

computational work of the most loaded processor by off loading part of the work to other 
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processors. The chapter is organized as follows. The parallel architecture of the Mercury Monte 

Carlo particle transport code is described Section 3.2. This is followed by a discussion of a 

problem that illustrates the need for some form of load balancing in spatially-decomposed 

parallel calculations in Section 3.3.  A discussion of the optimal number of processors that 

should be assigned to the domains is then presented in Section 3.4. The various algorithms used 

to implement dynamic load balancing are also described in Section 3.4.  This is followed by 

results from parallel calculations which illustrate the advantage of enabling the dynamic load 

balancer in Section 3.5. Finally, the conclusions of this chapter are presented in Section 3.6. 

3.2. The Architecture of the Mercury Parallel Monte Carlo Code 

Mercury supports two modes of parallelism: spatial parallelism via domain decomposition, 

and particle parallelism via domain replication. These modes may be used individually or in 

combination. Spatial parallelism involves spatial decomposition of the problem geometry into 

domains and the assignment of each processor to work on a different (set of) domain(s).  

In particle parallelism, the problem geometry is replicated on each processor, and the 

particles are divided among each of the processors. At the end of each cycle, the tally results 

need to be summed to the boss processor and presented to the user. 

These modes can also be used in combination, where the problem is spatially decomposed 

into domains, and then within a domain, the particle load is divided among multiple processors. 

Each domain can be assigned a different number of processors (replication level), depending on 

the particle work load.  Figure 14 shows an example of a problem that is divided into 4 domains, 

each with a different replication level.  The lower left domain has the most work and is replicated 
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3 times; the upper right domain has the least work and is only replicated once.  The other two 

domains have a workload somewhere in-between and are replicated two times each. 

 

Figure 14: Illustration of hybrid domain decomposition with domain replication. 

3.3. The Requirement for Dynamic Load Balancing 

The requirement for some form of active management of the particle work load in a 

spatially-decomposed parallel transport calculation is illustrated in Figure 15. Figure 15 (A.) 

shows the geometry of the double-density Godiva supercritical system, a highly-enriched 

uranium sphere of radius r = 8.7407 cm and density of 37.48 g/cm3. Particles are sourced at the 

origin and an eigenvalue calculation is performed to find the alpha-eigenvalue of the system 

using the pseudo dynamic alpha algorithm [43]. This calculation is run on a 2D mesh with 4-way 

spatial parallelism: a 2 by 2 spatial decomposition, as indicated by the black domain boundary 

lines in Figure 15 (B.) and Figure 15 (C.). 

Figure 15 (B.) and Figure 15 (C.) compare two different ways of distributing 16 processors to 

4 spatial domains. The first approach (Figure 15 (B.)) is to uniformly assign 4 processors to each 

domain. This configuration does not take into account the actual work load of the domain, so it is 

less efficient (60% parallel efficiency, for a single cycle) than an approach that considers the 

1 Processor 
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domain work load when deciding how many processors should be assigned to each domain. The 

second configuration (Figure 15 (C.))  assigns processors to domains based on the work load of 

the domain. As a result, the parallel efficiency of this calculation is much higher (91%, for a 

single cycle).  Figure 15 (B.) and Figure 15 (C.) are pseudo color plots of particle number 

density, redder areas are more computational work. 

        
                    (A.)                                        (B.)                                         (C.) 

             Problem setup.                     60% efficient.                           91% efficient. 

Figure 15: Godiva criticality problem, uniform and load balanced replication levels.   
   

Now in Figure 16 we examine the dynamic nature of the workload as the problem 

evolves over time.  Figure 16 shows pseudo color plots of particle number density. Redder areas 

indicate more computational work.  Clearly we have an uneven workload over time.  The black 

lines indicate domain boundaries.  Time increases to the right in the five plots (for five different 

cycles) in Figure 16.  Initially all of the work is on the lower-left domain (Domain 0), since the 

particles were sourced in at the origin. As time evolves, the particles migrate to the other 

domains.   
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Figure 16: Pseudo-color plot of particle number density at various times during the 
simulation.   

As used here, the parallel efficiency is defined to be the average computational work over 

all processors, divided by the maximum computational work on any processor.  Let W(p) be the 

computational work on processor p, for p=1,2,…,P.  We define the parallel efficiency as follows: 
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Note that the parallel efficiency is inversely proportional to the maximum work load of any 

processor, so having even a single processor that is over worked can dramatically slow down the 

entire calculation. Since the calculation run time is inversely proportional to the parallel 

efficiency, the goal of load balancing is to maximize the parallel efficiency and minimize the run 

time to run the problem. The parallel efficiency of the calculation changes as the problem 

evolves over time or as the replication level of the domains changes. 

3.4. Load Balancing Algorithm: The Optimal Number of Processors per Domain 

The figures in the previous section clearly show that the computational work load in a 

parallel Monte Carlo transport calculation changes over the course of the problem. This implies a 

change in the work load of any given domain. As a result, the number of processors assigned to 

work on a domain (replication level) should respond according to the work load of that domain.  
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Figure 17 is a graph showing the dynamic nature of the work load from cycle to cycle in the 

double-density Godiva problem. The calculation was run with 4 domains on 16 processors. The 

calculation begins with a uniform assignment of processors to domains: each domain has 4 

processors working on its particles. After the first cycle, the code responds to the large number of 

(sourced) particles in Domain 0 by assigning 13 processors to it (3 processors are reassigned 

from each of Domains 1, 2 and 3). As the calculation proceeds, the work load per domain 

changes, leading the code to redistribute the number of processors working on each domain. At 

the end of the simulation, there are 6 processors working on Domains 0 and 2, while 2 processors 

are working on Domains 1 and 3. 

 

Figure 17: Replication level (number of assigned processors) of each domain as a function 
of Cycle. 

The computational work performed by each processor W(p) is approximately equal to the 

number of particle segments that occurred on each processor during the previous cycle. A 

segment is defined to be one of the following particle events: 
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(1) Facet Crossing 
(2) Collision 
(3) Thermalization 
(4) Census 
(5) Energy-group Boundary Crossing 
 

The computational work performed on each processor, represented by a single integer per 

processor, is then globally communicated, such that each processor knows the work load of all 

other processors. This step makes this algorithm not scalable to millions of processors, but this 

algorithm has been run effectively up to 65,536 processors.  Future work will address modifying 

the algorithm to make it scalable.  Since the domain that each processor is currently assigned to 

is known, determining the most worked domain is straightforward.  

3.4.1 Number of Processors per Domain Algorithm. 

This algorithm determines how we decide how many processors should work on each 

domain, the goal being to minimize the work on the most worked processor.  This algorithm is 

analogous to what a CEO of a company might do when assigning employees to different 

projects.  In this case 

P  = total number of employees,  
N  = number of projects,  
wi = total work for project i (1…N), and  
pi = number of employees working on project i (1…N).   
 

Initialization: each project gets 1 employee.  Iterate until there are no more employees: find the 

project with the most work per employee and give them another employee. 

INPUT:  

P = total number of processors. 

N = total number of domains. (P ≥  N) 

wi : i=1…N,  wi = work on domain i. 
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OUTPUT: 

pi : i=1…N, pi = number of processors assigned to domain i, such that: 

1.  1≥ip    for i=1…N.    (Each domain is assigned at least one processor) 

2.  Pp
N

i
i =∑

=1

    (The sum of all the processors assigned to all the domains must 

equal the total number of processors.) 

3. 
i

i

Ni p
wMax  

...1=
    is minimized.  (The maximum work per processor is minimized.) 

Algorithm: 

Keep a maximum priority queue of the work per domain wi/pi. 

for i = 1 … N: 
 pi = 1                        // give 1 processor to each domain 
 domainQueue.push(wi/pi, i)    //  put on a max priority queue 
for i = N+1 … P:   // for all the extra processors (we have more processors 
than domains, P ≥  N) 
 (wimax/pimax, imax)= domainQueue.pop()  // Get the domain with the most 
work/processor 
 pimax++                          // Give that domain one more processor 

domainQueue.push(wimax/pimax, imax)  // Put the updated domain back on the 
queue 
 

A proof by mathematical induction on P shows that this algorithm minimizes 
i

i

Ni p
wMax  

...1=
. 

Proof: Fix N ≥ 1.  For the base case, we have P processors and P = N.  There are not any degrees 

of freedom so p1 = p2 = … = pN = 1 and iNi
i

i

Ni
wMax

p
wMax    

...1...1 ==
= .  Inductively assume that for P 

processors 
i

i

Ni p
wMax  

...1=
 is minimized.  Now if we have P+1 processors, we use the inductive 

hypothesis to find the solution for P processors.  With only P processors, say the maximum value 
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of wi/pi occurs at i=imax.  Then wimax/pimax ≥ wi/pi.  We have 1 extra processor so we can reduce 

the maximum value of wi/pi by incrementing pimax by 1, so now wimax/(pimax + 1) < wimax/pimax.  So 

i

i

Ni p
wMax  

...1=
 is minimized.  The run time of this algorithm is Θ( Plog(P)) since it has P total 

iterations, and each iteration does log(P) work, since both push() and pop() have logarithmic 

complexity for a priority queue. 

3.4.2 The Particle Communication Algorithm 

Once the per-domain particle work load has been used to determine the optimal number 

of processors to assign to each domain, particles must be communicated between processors in 

order to move from the current (load imbalanced) state to the desired (load balanced) state. This 

task is accomplished by (a) finding the changes to the per processor particle count that need to be 

communicated (or transferred) to another processor followed by (b) sending that small set of 

particles to other processors in order to achieve load balance. 

The operation of this algorithm is illustrated in Figure 18. The first step is to deal with the 

processors that are leaving a domain.  The particles on a processor leaving a domain must be 

communicated to the processors that remain on that domain.  That is illustrated in Step 1 of 

Figure 18.  The leaving processor simply sends all of its particles evenly to the remaining 

processors working on the domain.  The next step is to balance the particle workload within each 

domain, illustrated in Step 2 of Figure 18.  Chapter 4 explains how to balance the particles within 

a given domain.  This is the homogeneous load balancing problem.  Among the processors 

assigned to a domain, any processor can operate on any particle.  We have developed a scalable 

algorithm for this step that has been run up to 221 = 2,097,152 MPI processes.  The final load 

balanced state is shown in Step 3 of Figure 18.  Note that the work per processor on different 
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domains is not necessarily balanced.  The work per domain wi/pi may be different for each 

domain, depending on the distribution of particles, the domain decomposition, and the number of 

processors.  The work per processor on the same domain will be load balanced. 

 

 

Figure 18: Illustration of particle communication algorithm. 

Step 1.  Domain 2 loses one 
processor that goes to work for 
Domain 0.  The particles on the 
processor that moves to Domain 0 
must be communicated to the 
processors that remain on Domain 
2. 

Domain 2 

Domain 0 

Domain 3 

Domain 1 

Step 2.  This is the 
communication necessary to 
achieve load balance within 
each domain.  See Chapter 4 
for full details. 

Domain 2 Domain 3 

Domain 0 Domain 1 

Step 3.   The end result of load balancing.  We 
have changed the number of processors per domain 
so that the maximum work per processor in 
minimized. 

Domain 2 Domain 3 

Domain 0 Domain 1 
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3.5. Results 

The efficacy of dynamic load balancing in the context of parallel Monte Carlo particle 

transport calculations is illutrated by running one criticality problem and one sourced problem. 

These problems are chosen because they exhibit substantial particle-induced dynamic load 

imbalance during the course of the calculation. Each of these problems is time dependent, and 

the particle distributions also evolve in space, energy and direction over many cycles. Two 

calculations were made for each of these problems, with the dynamic load balancing feature 

either disabled or enabled. 

3.5.1 Criticality Test Problem 

The criticality problem chosen for this test is one of the benchmark critical assemblies 

compiled in the International Handbook of Evaluated Criticality Safety Benchmark Experiments 

[44]. This particular critical assembly is a known as HEU-MET-FAST-017: a right-circular 

cylindrical system comprised of alternating layers of highly-enriched uranium and beryllium, 

with beryllium end reflectors. The assembly is L = 35.31 cm in length and has a radius of r = 

9.995 cm, as shown in Figure 19. The central cavity contains a neutron source, and the two 

halves of the assembly are separated by a 1.52 cm air gap.  In Figure 19 the green regions are 

highly enriched uranium, while the red and maroon regions are two different forms of beryllium. 

This problem was run on a 2D r – z cylindrical mesh that was spatially-decomposed into 

14 domains, axially along the axis of rotation. Figure 20 shows an illustration of the domain 

boundaries.  Parallel calculations were run on 28 processors of the MCR machine (a Linux-

cluster parallel computer with 2-way symmetric multiprocessor nodes) at the Lawrence 

Livermore National Laboratory (LLNL). These calculations were run with  2×106 particles, using 
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a “pseudo-dynamic” algorithm that iterates in time to calculate both the keff and alpha 

eigenvalues of the system [43]. 

The nature of particle induced load imbalance in this calculation is clearly seen in Figure 

21.  Pseudocolor plots of the particle number density are shown at five cycles during the 

evolution of the time iteration algorithm. Redder areas indicate a greater particle density, and 

hence a larger work load, than blue areas. The domain boundaries are indicated by the black lines 

in Figure 21. The particles are initially sourced into the problem at the center of the source 

cavity, as shown in the Cycle 1 plot. As the cycles progress, the particles transport through all of 

the domains, but it is clear the heterogeneous nature of this assembly results in uneven particle 

densities at all cycles. 

The run in which the dynamic load balancing feature was disabled had a uniform, static 

replication level of two processors assigned to each domain. When load balancing is enabled, the 

replication level of each domain varies in accordance with the work load per domain, as shown 

in Figure 22. The initial load imbalance (see the Cycle 1 plot in Figure 21) results in 12 

processors being assigned to work on the domain containing the source cavity (Domain 5) during 

cycle 1: a 12-to-2 (6-to-1) max-to-mean domain processor count. As the work load evens out 

over time, the replication level becomes less peaked at the center of the system.  By cycle 15, 

some central domains are assigned 3 processors, while the peripheral domains are assigned 1 

processor, with the remaining domains being assigned 2 processors: a 1.5-to-1 max-to-mean 

ratio. 

The non-load-balanced and load balanced per-cycle run times and the parallel efficiencies 

are presented as a function of the cycle count in Figure 23. These figures show only the first 14 
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iterative cycles. When the load balancing feature is enabled, the per-cycle run times are reduced 

by more than a factor of 2.0 for Cycle 2, and the reduction in run time is a factor of 1.3 at Cycle 

14. Similarly, the parallel efficiency is increased by a factor of 2.4 at Cycle 2, and then falls off 

to a factor of 1.2 at Cycle 14. The cumulative run time is reduced by 39% when the load balancer 

is enabled, as shown in Table 6. 
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Figure 19: Geometry of the critical assembly test problem HEU-MET-FAST-017. 

 

Figure 20: Domain decomposition of the critical assembly test problem HEU-MET-FAST-
017.  
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Figure 21: Evolution of neutron number density in critical assembly test problem HEU-
MET-FAST-017. 

  

60 
 



 
Figure 22: Evolution of number of processors per domain in critical assembly test problem 
HEU-MET-FAST-017. 

  

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13

N
um

be
r o

f P
ro

ce
ss

or
s 

Domain Number 

Number of Processors Per Domain 

Cycle 0

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 7

Cycle 10

Cycle 15

61 
 



 

 
Figure 23: Per-cycle run time and parallel efficiency as a function of cycle from the critical 
assembly test problem HEU-MET-FAST-017. 
Table 6: Problem run time from critical assembly test problem HEU-MET-FAST-017. 

Problem Run Time (sec) 
Cycle Range Not Load Balanced Load Balanced Speedup 
1 to   4 102.2 65.0 1.57 
1 to 14 397.1 286.4 1.39 
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3.5.2 Sourced Test Problem 

The time-dependent sourced problem chosen for this test is a spherized version of a 

shielding configuration that has been considered as a candidate for the neutron shield 

surrounding a fusion reactor. The shield consists of alternating layers of stainless steel and 

borated polyethylene, as shown in Figure 24.  The stainless steel is green, the borated 

polyethylene is blue, and the air is red.  The radius of the inner steel sphere is r = 35.56 cm, and 

the thickness of each of the other shells is 5.08 cm. Monoenergetic E = 14.1 MeV particles are 

sourced into the center of the system from an isotropic point source. During each of the first 200 

cycles, 1×105 particles are injected into the system. The source is then shut off, and the particles 

continue to flow through the shield for the next 800 cycles. The size of the time step is ∆t = 

1×10−8 sec. 

This problem was also run on a 2-D r – z cylindrical mesh that was spatially-decomposed 

in 4 domains, 2 domains along each of the axes. Parallel calculations were made using 16 

processors of the MCR machine. The main tally for these calculations is the time history of the 

particles leaking across the outer steel layer into the air.  

The evolution of the particle positions is shown for six cycles in the scatter plots of 

Figure 25. The particles are color coded according to their kinetic energy: red is 14.1 MeV, green 

is 1×10−5 MeV and cyan is 1×10−8 MeV. The interior (exterior) shell boundaries are shown in 

blue (red), while the domain boundaries are shown in black. It is clear from these figures that the 

majority of the particle work load “flows” from the bottom-left domain (Domain 0) early in time 

(Cycle 2), to the domains on the periphery (Domains 1 and 2) later in time (Cycles 301 through 

1001). 
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Figure 24: Geometry of the spherical shield sourced test problem. 
Figure 26 shows a plot of the number of processor per domain for each of the 4 domains 

in this problem.  Domain 0 has the particle point source and had significantly more work than the 

other domain, especially during the first 200 cycles when the source is on.  Therefore Domain 0 

has many more replicated processors to divide the particle workload. 

Figure 27 is a plot of the Cycle Run Time vs. Cycle.  When we compare load balanced 

with non-load balanced, we see for the first 200 cycles the load balanced case runs in about 3 

seconds per cycle, but the non-load balanced case runs in about 7 seconds per cycle.  After the 

source turns off, for the next 800 cycles both cases take about 1 second per cycle.  When there is 

not much particle workload, load balancing has less of an impact because we have to pay fixed 

costs per cycle, independent of the particle workload. 

Figure 28 shows the Parallel Efficiency vs. Cycle for load balanced and non-load 

balanced runs.  We see for the first 200 cycles, the average parallel efficiency is about 85% for 
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the load balanced case and only about 30% for the non-load balanced case, which is why load 

balancing makes the calculation run significantly faster.  
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Cycle 2     Cycle 101 

 
Cycle 201     Cycle 301 

 
Cycle 701     Cycle 1001 

 

Figure 25: Plot of particle position, colored by energy for spherical shield sourced problem. 
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Figure 26: Number of processors per domain for spherical shield sourced problem. 
 

 

Figure 27: Cycle Run Time vs. Cycle for spherical shield sourced problem. 
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Figure 28: Parallel Efficiency vs. Cycle for spherical shield sourced problem. 
 

Table 7 shows the problem run time for the spherical shield sourced problem.  Particles 

are actively source in for the first 200 cycles, so the particle workload is very uneven for those 

cycles and the load balanced case has a speedup of 2.20 compared to the non-load balanced case.  

The remaining 800 cycles are not as computationally intensive and the runtime is about the same 

in either case, diluting the speedup factor of the entire calculation to be 1.58. 

Table 7: Problem run time for spherical shield sourced problem. 
Problem Run Time (sec) 

Cycle Range Not Load Balanced Load Balanced Speedup 
1 to   201 1355 615 2.20 
1 to 1001 2221 1404 1.58 

3.6 Conclusions 

The particle work load in a spatially-decomposed, parallel Monte Carlo transport 

calculation has been shown to be dynamic and non-uniform across domains. This particle-

induced load imbalance results in a reduction of the computational efficiency of such 

calculations. In an effort to overcome this shortcoming, the Mercury Monte Carlo code has been 
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extended to include a dynamic particle load balancing algorithm. The method uses a variable 

number of processors that are assigned to each domain (replication level) in an attempt to 

balance the number of particles per processor. The algorithm includes logic that determines the 

optimal number of processors per domain, as well as how to perform the load balancing particle 

communications between processors. This method has been applied to the parallel calculation of 

one criticality and one sourced problem, where it has yielded more than a two-fold increase in 

the parallel efficiency.
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4 Scalable Load Balancing For Particle Parallelism 

In this chapter we consider the homogeneous load balancing problem, where each unit of 

work (particle) can be processed on any processor.  Also each particle requires about the same 

amount of computational work to process it.  This problem occurs when distributing the particles 

in domain replicated particle parallel Monte Carlo transport problems. 

4.1 Introduction 

In order to run computer simulations efficiently on massively parallel computers with 

hundreds of thousands or millions of processors, care must be taken that the calculation is load 

balanced across the processors.  Examining the workload of every processor leads to an 

unscalable algorithm, with run time at least as large as Ο(N), where N is the number of 

processors.  We present a scalable load balancing algorithm, with run time Ο(log(N)), that 

involves iterated processor-pair-wise balancing steps, ultimately leading to a globally balanced 

workload [45].  We demonstrate scalability of the algorithm up to 2 million MPI processes on 

the Sequoia [7] supercomputer at Lawrence Livermore National Laboratory.  

We assume we have a distributed memory parallel supercomputer, using the Message 

Passing Interface (MPI) [19] for inter-process communication.  The work described in this 

section is aimed at developing a scalable load balancing technique for a massively parallel Monte 

Carlo particle transport code [8], where the particle workload is distributed across processors.  

The assumptions for this chapter are that the computational cost of all the Monte Carlo particles 

is the same, and that any processor can process any particle.  In our previous load balancing 

algorithm [41], [42], a description of each processor’s workload was gathered to the 0th ranked 

processor, where a global communication graph was constructed to achieve a load balanced 
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state.  This algorithm performed efficiently up to thousands of processors, but for larger 

processor counts, the load balancing step itself took longer than the computation portion of the 

calculation.  As soon as one array of length proportional to the number of processors is required, 

the algorithm is already not scalable.  We define an algorithm to be scalable if its run time is at 

most proportional to some power of the logarithm of the number of processors.  This definition 

rules out any global algorithm that needs to simultaneously know the workload of every 

processor.   

We have developed and implemented a scalable load balancing algorithm in the Mercury 

Monte Carlo particle transport code [8], [34], [14].  Mercury is written in C++ with a Python 

user interface and uses distributed memory parallelism with MPI.  Mercury models dynamic 

neutron, gamma and light charged particle transport and also solves neutron criticality problems.   

The geometry information through which the particles are transported is stored redundantly on 

all of the processors and is not domain decomposed in this case.  (As described in Chapter 2, 

Mercury has domain decomposition, but this chapter only addresses particle replication). The 

number of Monte Carlo particles can be very large, and the particles are load balanced and 

distributed across processors.   

The run time of our previous load balancing algorithm [41] was Ο(N2), where N is the total 

number of processors.  This algorithm performed efficiently up to several thousand processors, 

but on 217 = 131,072 processors, the load balancing step itself took 90 times longer than the 

computation part of the calculation.  The load balancing step should take only a small fraction of 

the computation part of the calculation.  The load balancing algorithm was not initially written 

with scalability in mind, so we have revisited load balancing with a focus on scalability. 
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Romano and Forget [46], [47] address a similar problem with a different set of constraints 

and assumptions.  Their algorithm has the constraint that particles must be processed in a certain 

order, but in our case each particle has its own random number seed and may be processed on 

any processor in any order.  This is a much less constrained problem and allows for an efficient, 

scalable, load balancing solution.  Other large scale load balancing work has been done with the 

CHARM++ [48] library in [49] and [50]. 

The remainder of this chapter is organized as follows.  In Section 4.2, we describe the need 

for and goals of load balancing for Monte Carlo calculations.  We describe in Section 4.3 the 

scalable load balancing algorithm that we have developed and implemented in Mercury.  In 

Section 4.4, we present numerical results from weak scaling studies that demonstrate the need for 

load balancing as well as the scalability of the load balancing algorithms we have developed.  In 

Section 4.5, we describe MPI communicator creation, which defines the set of processors 

involved in each step of the load balancing algorithm.  In Section 4.6 we present scaling results.  

Finally we conclude this chapter in Section 4.7 and offer suggestions for future work. 

4.2 Load Balancing For Monte Carlo Calculations 

The load balance efficiency of a calculation is the average amount of computational work 

per processor divided by the maximum amount of computational work on any processor.  Let w0, 

w1, …, wN-1 be the amount of computational work per processor; then the load balance efficiency 

is: 
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Load Balance Efficiency =
𝑎𝑣𝑒(𝑤𝑖)
𝑚𝑎𝑥(𝑤𝑖)

=  
1
𝑁 ∑ 𝑤𝑖0≤i<N

max
0≤i<N

𝑤𝑖
 

The goal of load balancing is to maximize the load balance efficiency of a calculation.  By 

moving work from one processor to another, we cannot change the average amount of work per 

processor, but we can change the maximum amount of work on any processor.  The goal of load 

balancing then becomes trying to minimize the amount of work on the processor that has the 

most work, thereby maximizing the load balance efficiency. 

At the start of each computational physics cycle, each processor starts with some number 

of particles.  The goal of the load balancing problem is for each processor to have the same 

number of particles (or have the maximum difference of particle counts be at most one if the 

number of particles is not a multiple of the number of processors).  The result of the load 

balancing algorithm is to have particles communicated between processors so that after the 

communication the particle counts are balanced.  Then the computational physics cycle occurs, 

which may induce new load imbalance, and the load balance step is repeated. 

Running problems without load balancing results in the load balance efficiency decreasing 

as a function of generation in an eigenvalue calculation.  The load balance efficiency also 

decreases as the number of processors increases.  Load balancing the problem enforces that all 

processors have essentially the same number of particles, so the efficiency remains high. 

 

   (1) 

73 
 



4.3 Scalable Partner Processor Algorithm 

An iterative load balancing algorithm was developed such that at each iteration, every 

processor finds a unique partner processor.  The partner processors send and receive the number 

of particles they own to each other.  Then both processors compute the average of these two 

numbers.  The partner that is above the average sends particles to the partner that is under the 

average, so both processors end up having the average number of particles.  If both processors 

have the same number of particles, then they are already load balanced and have nothing to do.  

This algorithm has pair-wise interactions between processors, never knowing what the global 

workload distribution looks like.   We define the processor rank to be the unique processor 

number in {0, 1, 2, …, N-1}, when there are N total processors.  After each iteration, the partner 

processors are individually balanced. By choosing the partner processor appropriately, on the kth 

iteration, all processor ranks with the same binary representation up to the last k digits will have 

exactly the same number of particles, i.e. processors in groups of 2k are balanced. 

We now define how the processors are paired.  Processors are paired based upon their 

processor rank and the current iteration number k of the algorithm.  We choose the partner 

processor on the kth iteration of the algorithm by defining the partner function fk, and the rank of 

the partner processor is given by:  partner = fk(rank), where 

𝑓𝑘(𝑟𝑎𝑛𝑘) = �𝑟𝑎𝑛𝑘 + 2𝑘     if the 𝑘𝑡ℎ binary digit of 𝑟𝑎𝑛𝑘 is 0
𝑟𝑎𝑛𝑘 − 2𝑘     if the 𝑘𝑡ℎ binary digit of 𝑟𝑎𝑛𝑘 is 1

     

Another interpretation of fk is to flip the kth binary digit of the input argument.  If an…a0 are the 

binary digits of the processor rank, then 

rank = 𝑎𝑛𝑎𝑛−1 …𝑎𝑘+1𝑎𝑘𝑎𝑘−1 …𝑎1𝑎0 = � 𝑎𝑖2i
𝑛
𝑖=0    where ai ∈ {0,1}               (3) 

   (2) 
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𝑓𝑘(𝑟𝑎𝑛𝑘) = 𝑓𝑘(𝑎𝑛𝑎𝑛−1 …𝑎𝑘+1𝑎𝑘𝑎𝑘−1 …𝑎1𝑎0) = 𝑎𝑛𝑎𝑛−1 …𝑎𝑘+1𝑎𝑘���𝑎𝑘−1 …𝑎1𝑎0      (4) 

𝑤ℎ𝑒𝑟𝑒  𝑎𝑘��� = 1 − 𝑎𝑘                                                                                                                       (5) 

fk has the appealing property that it is self-inverting: fk(fk(rank)) = rank, i.e. fk is an involution, so 

fk
-1 = fk .  As a result of this property, 

fk(rank) = partner and fk(partner) = rank.                                       (6) 
Figure 29 shows a graph of the partner function fk  for k=0,1,2,3,4.  Note the functions are 

symmetric about the identity line (“y=x” line) at integer values, which characterizes involutions 

(self inverse functions). 

 

 
Figure 29: The partner function fk for k=0,1,2,3,4.   
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Algorithm 1 shows pseudocode for the implementation of a scalable load balancing 

algorithm. 

 

 

Claim: Let N = the number of processors, when N=2n is a power of 2, then 

BalanceWithPartnerWrapper()(Algorithm 1) globally balances the number of particles 

per processor so that all processors end up with exactly the same number of particles at the end 

of the algorithm.  (Or the processor with the most number of particles has Θ(log(N)) more 

particle than the processor with the least number of particles, which is small relative to the 

BalanceWithPartnerWrapper() 
{ 
    int NumRounds = ceiling(log2(numProcessors)); 
 
    for ( int k = 0; k < NumRounds; k++ ) 
    { 
        BalanceWithPartner(k); 
    } 
} 
 
BalanceWithPartner(int binaryDigit) 
{ 
    // rank is this processor’s MPI rank 
    // all binary digits agree except binaryDigit is flipped in partner 
    int partner = rank ^ (1 << binaryDigit); 
 
    // Send and Recv with partner processor the number of particles each has 
    int aveNumParticles = ( myNumParticles + partnerNumParticles ) / 2; 
 
    if ( myNumParticles > partnerNumParticles ) // I am sending 
    { 
        // send (myNumParticles – aveNumParticles) particles to partner 
    } 
    else if ( myNumParticles < partnerNumParticles ) // I am receiving 
    { 
        // recv (partnerNumParticles – aveNumParticles) particles from partner 
    } 
} 

Algorithm 1: Pseudocode showing the implementation of a scalable load-balancing algorithm 
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number of particles per processor).  Furthermore the number of communication steps of this 

algorithm is Θ(log(N)). 

Proof: This follows by mathematical induction.  See Figure 30 for a graphical illustration of how 

the algorithm works. 

If N = 1, then the problem is already load balanced.  If N=2, then after log2(2) = 1 iteration, each 

processor ends up having the average number of particles per processor (or they differ by 1 if 

there are an odd number of particles), and the simulation is load balanced.  Inductively assume 

that the claim holds for N = 2n processors.  When we have 2n+1 processors, divide the processors 

into two groups:  

Group (A) ranks 0 to 2n-1  

Group (B) ranks 2n to 2n+1-1 

After n iterations of the algorithm, by induction each of groups A and B are independently load 

balanced (and processors in each group have not communicated between the groups).  So all of 

the processors in group A have wA work each, and all of the processors in group B have wB work 

each.  On the (n+1)st iteration of the algorithm, each processor from group A partners with a 

processor from group B in a one-to-one fashion so that every processor ends up with (wA+wB)/2 

work, so the calculation is load balanced.  The number of communication steps of the algorithm 

is Θ(log(N)) since BalanceWithPartnerWrapper() calls BalanceWithPartner() 

Θ(log(N)) times and BalanceWithPartner() does the communication between the two 

partner processors.  Since we cannot have a fraction of a particle, it may be the case that after 

calling BalanceWithPartner(), one partner processor has 1 more particle than its partner.  
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This may happen Θ(log(N)) times (once for each round), so the processor with the most number 

of particles may have Θ(log(N)) more particles than the processor with the least number of 

particles.  Note that Θ(log(N)) is small compared to the number of particles per processor, so the 

calculation is still load balanced. QED. 

Figure 30 illustrates the initial workload of each processor before load balancing, and 

what the workload looks like after each round of load balancing.  The processor ranks are 

colored so that processors of the same color are “partners” and are communicating with each 

other; this partnership is also indicated with an arc drawn between the processor ranks 

communicating.  After k rounds of load balancing, processors in groups of 2k have the exact 

same workload. 
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We have also developed and implemented a generalized version of this load balancing 

algorithm that groups processors together in groups of size 2w, where w is a user-settable 

parameter of the algorithm.  The generalized algorithm has the advantage that the larger w is, the 

fewer rounds of load balancing are required to achieve global load balance (but each round takes 

longer).  See Algorithm 2, the BalanceWork algorithm, that balances the particle workload 

across N different processors.  This algorithm has a run time of O(N log(N)).  We do not call this 

algorithm to balance the workload on all of the processors at once, since that would not be 
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Figure 30: Illustration of processor workloads during load-balancing. 
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scalable.  Instead we call this algorithm log2(N)/w  times, in processor groups of size 2w, and 

balance the workload in stages.  The detailed description of the general algorithm is described in 

Section 4.5. 

 

 

Claim: BalancWork() balances the workload of N processors and its computational 

complexity is Θ(N log(N)). 

Proof: The idea of the algorithm is for the processor that has the most work (maxRank) to send 

work to the least worked processor (minRank), so that the most (or least) worked processor 

ends up having the average amount of work, and the other processor ends up having max+min-

ave work.  The most and least worked processors are recomputed and re-inserted into the priority 

queues and the algorithm is iterated N times.  At each iteration of the algorithm, one processor 

BalanceWork(work[0…N-1],  /* Input: Number of particles per processor */ 
            communicator  /* Input: MPI communicator */ ) { 
   Max_priority_queue maxQueue; 
   Min_priority_queue minQueue; 
   ave = (work[0] + work[1] + ... + work[N-1])/N; 
   for ( int rank = 0; rank < N; rank++ ) { 
      maxQueue.push(work[rank], rank); 
      minQueue.push(work[rank], rank); 
   } 
   for ( int iteration = 0; iteration < N; iteration++ ) { 
      (maxWork, maxRank) = maxQueue.pop(); 
      (minWork, minRank) = minQueue.pop(); 
      numParticles = min(ave – minWork, maxWork – ave); 
      minWork += numParticles; 
      maxWork -= numParticles; 
      Processor maxRank sends    numParticles particles to   processor minRank 
      Processor minRank receives numParticles particles from processor maxRank 
      maxQueue.push(maxWork, maxRank); 
      minQueue.push(minWork, minRank); 
   } 
} 

Algorithm 2: Pseudocode for the BalanceWork algorithm, which balances the particle 
workload across N processors. 
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ends up having the average amount of work, so after at most N iterations, all N processors have 

the average amount of work and the calculation is load balanced.   

We use a max priority queue and a min priority queue which are data structures that have 

the property that data can be “pushed” onto them with Θ( log(N) ) cost and the max (or min) 

can be “popped” off with Θ( log(N) ) cost.  Because we do at most log(N) work each iteration 

of the loop, the computational complexity of this algorithm is Θ(N log(N)), where N is the 

number of processors in the input communicator.  QED. 

4.4 Numerical Scaling Results 

The test problem that we use in this chapter to investigate parallel scalability is the Godiva 

critical assembly test problem (HEU-MET-FAST-001) [44], a uranium sphere of radius 8.7407 

cm and density 18.74 g/cm3 (see Figure 31).  The isotopic atom fractions are U234 = 

0.01025002, U235 = 0.9376829 and U238 = 0.05206708.  The Godiva problem was modeled 

using one spherical combinatorial geometry cell.  The book Computational Methods of Neutron 

Transport by Lewis and Miller [51] describe the K-eigenvalue that is computed using the Static-

K algorithm. 

4.4.1 Effects of Load Imbalance 

In this section, we demonstrate the effects of load imbalance for the Godiva critical 

sphere problem when run with large numbers of processors.  Lawrence Livermore National 

Laboratory has the Sequoia [7] supercomputer, which we use to study the processor scaling of 

the Godiva Static-K criticality calculation up to 2 million (221) processors.  We run Godiva as a 

weak scaling problem, that is, with fixed work per processor as we increase the number of 

processors.  Each processor has 10,000 particles, so the total number of particles increases as we 
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increase the processor count up to 221 = 2,097,152 processors and 21 billion particles.  We 

demonstrate that running this problem without load balancing results in the load balance 

efficiency decreasing as a function of Static-K generation.  The load balance efficiency decreases 

as the number of processors increases, because the amount of work on the most worked 

processor increases as the number of processors increases.  If each processor starts with the same 

number of particles, the number of particles on a processor at the end of an iteration follows a 

normal distribution [46].  As the number of processors increases, the normal distribution is 

sampled more often.  As a result, the number of particles on the most worked processor 

continues to increase and the efficiency decreases. 

 
Figure 31: The Godiva critical assembly test problem. 

Figure 32 shows the load balance efficiency for 6 Godiva Static-K calculations that are 

NOT load balanced and run on 21, 24, 28, 216, and 221 processors.  In general, the load balance 

efficiency decreases as the number of processors increases and decreases with the number of 

iterations (Static K generations). 
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Figure 33 shows StdDev(K) vs. log2(Num_Processors).  By the law of large numbers, the 

StdDev(K) should be proportional to 1/sqrt(Num_Particles).  Since Num_Particles = 10,000 * 

Num_Processors, StdDev(K) should be proportional to 1/sqrt(Num_Processors), which is what 

we observe in this log-log plot. 
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4.4.2 Partner Processor Algorithm Results 

In this section, we investigate the parallel scalability of the partner processing load 

balancing algorithm.  We ran a weak scaling study for N=1, 2, 4, 8, 16, …, 217 = 131,072 

processors on the Dawn supercomputer (IBM Blue Gene/P [6]) at Lawrence Livermore National 

Laboratory.  The test problem is the Godiva critical assembly test problem again run with 10,000 

particles per processor.  So every time we doubled the number of processors, we doubled the 

total number of particles.  We ran 5 iterations of a Static-K calculation.   

Figure 34 plots the wall time spent executing the load balancing algorithm at processor 

counts of 20, 21, 22, …, 217 = 131,072.  This plot is almost linear on a log-linear scale.  The linear 

regression line through the data has slope 0.0633s/(doubling of processors).  Each time we 

double the number of processors, we pay a fixed cost of 0.0633s, regardless of the number of 
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Figure 33: StdDev(K) vs. log2(Num_Processors).  
 

84 
 



processors.  These calculations confirm that the load balancing algorithm wall time is in fact 

proportional to the log of the number of processors.  

 

 

4.4.3 Generalized Load balancing Algorithm Results 

We study the processor scaling of the Godiva Static-K criticality calculation up to 2 

million (221) processors using the Sequoia supercomputer.  The results in this section used the 

generalized load balancing algorithm described in Section 4.5.  We examine how the load 

balance efficiency scales, shown in Figure 35, and how the particle tracking time scales, shown 

in Figure 36.  We also examine how the load balancing step itself scales with the number of 

processors, shown in Figure 37.  We have proven the algorithm scales like Ο(log(N)), which is 

what we observe when we time the algorithm. 

Figure 35 is a plot of the average load balance efficiency vs. log2(Num_Processors), 

comparing load balancing against not load balancing.  With load balancing, the efficiency 
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remains above 95%, even at 2 million processors.  Without load balancing, the efficiency 

decreases with processor count down to 68% at 2 million processors. 

 

 

Figure 36 shows the wall time spent tracking particles vs. log2(Num_Processors), 

comparing load balancing against not load balancing.  With load balancing, we see essentially 

perfect scaling up to 2 million processors.  Since each processor has the same amount of work, 

the calculation takes the same amount of time at any scale.  Without load balancing, dispersion in 

the number of particles per processor occurs, and the calculation cannot proceed until the most 

worked processor has finished.  This dispersion in processor workload results in an increase in 

tracking time. 
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Figure 36: Wall time spent tracking particles vs. log2(Num_Processors) 
  
 

Figure 37 shows the scaling behavior of the load balancing algorithm by plotting the load 

balancing time vs. log2(Num_Processors).  On this plot the wall time should look roughly like a 

straight line, since the algorithm is Ο(log(N)).  The algorithm balances particle workloads in 

processors of group size 29, so we see an extra added expense at 29 and 218, since the algorithm 

needs to do an additional round of communication. 
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Figure 37: Scaling of the generalized load-balancing algorithm. 
 

 

4.5 Generalized Load Balancing Algorithm 

In this section we describe a generalization of the partner processor load balancing 

algorithm.  Instead of grouping processors together in groups of size two, the generalized 

algorithm balances particles in processor groups of size 2w, where w is a parameter of the 

algorithm.  One of the necessary steps in this algorithm is to create an MPI Communicator 

(which is a group of communicating processors) for the processors involved in communication.  

Since there are many rounds of communication required to achieve load balance, this algorithm 

creates an MPI Communicator for each round. 

4.5.1 MPI Communicator Creation 

The next algorithm describes how to create MPI communicators of size 2width, where width 

is a parameter of the algorithm.  We create one communicator for each round of the load 
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balancing algorithm; the total number of rounds depends on the total number of processors being 

used for the calculation, and the width parameter: 

                                              𝑁𝑢𝑚𝑅𝑜𝑢𝑛𝑑𝑠 = �log2(𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠)
𝑤𝑖𝑑𝑡ℎ

� 

totalNumProcessors must be a power of 2, totalNumProcessors = 2n, so  

          𝑁𝑢𝑚𝑅𝑜𝑢𝑛𝑑𝑠 = � 𝑛
𝑤𝑖𝑑𝑡ℎ

� 

See Table 8 for an example of the processor ranks in each communicator when width=2.  Let the 

binary digits of the rank of a processor be:    rank = anan-1  …  a5a4  a3a2  a1a0. 

Table 8: Processor ranks in each communicator when width=2. 

Round 0: 

communicator[0] 

Round 1: 

communicator[1] 

… Last Round: 

communicator[NumRounds-1] 

anan-1  …  a5a4  a3a2  00 anan-1  …  a5a4  00 a1a0  00  …  a5a4  a3a2  a1a0 

anan-1  …  a5a4  a3a2  01 anan-1  …  a5a4  01 a1a0  01  …  a5a4  a3a2  a1a0 

anan-1  …  a5a4  a3a2  10 anan-1  …  a5a4  10 a1a0  10  …  a5a4  a3a2  a1a0 

anan-1  …  a5a4  a3a2  11 anan-1  …  a5a4  11 a1a0  11  …  a5a4  a3a2  a1a0 

 

Table 8 shows the processor ranks in each communicator.  The ranks in each 

communicator are different for each processor since they depend on the rank of each processor.  

The same communicator is created on 2width processors. 

Note that within each round (column), each processor creates exactly one communicator.  

Processors in groups of size 2width create the same communicator.  The processors have been 

partitioned into disjoint communicators.  The size of each communicator is 2width, and we have 2n 
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total processors; so across all processors, we have 2n-width different communicators per round.  

The processors in a communicator have identical binary digits except for width digits.  In the 0th 

round, the least significant width digits are allowed to vary, and each round the variable digits 

“shift to the left”.  Note that when width=1, this algorithm reduces to the partner processor 

balancing algorithm from the beginning of this chapter. 

Below is the pseudocode for the creation of the MPI communicators and for using the 

communicators to load balance the particle workload. 

 

 

vector<MPI_Comm> CreateCommunicators(int width /* input */ ) { 
    int NumRounds = ceiling(log2(totalNumProcessors)/width); 
    vector<MPI_Comm> communicator(NumRounds); 
    for ( int k = 0; k < NumRounds; k++ ) { 
        int communicatorSize = 1 << width; 
        int mask = ( communicatorSize-1 ) << (round * width ); 
        if ( round == NumRounds - 1 ) //deal with the remainder on the last round 
            communicatorSize = totalNumProcessors >> (round*width); 
        vector<int> processors(communicatorSize); 
        for ( processor = 0; processor < communicatorSize; processor++ ) 
            processors[processor] = (rank & ~mask) + (processor<<(round*width)); 
        communicator[k] = MPI_Comm_create(processors); 

    } 
    return communicator; 
} 
LoadBalance(int width,                  /* input */ 
            communicator[0…NumRounds-1] /* input: MPI communicators */ ) { 
    int NumRounds = ceiling(log2(totalNumProcessors)/width); 
    for ( int k = 0; k < NumRounds; k++ ) { 
        work[0…2w’-1] = MPI_Allgather(MyNumParticles, communicator[k]); 
        BalanceWork(work, communicator[k]); 

    } 
 

 
 
Algorithm 3: CreateComunicators() is done once per simulation, but LoadBalance() is 
done every cycle of the simulation, since each cycle can potentially introduce load imbalance. 

90 
 



Claim: The LoadBalance()algorithm balances the particle workload and has computational 

complexity Θ( 2w log2(N) ), where N=2n is the total number of processors in the simulation and 

w=width is a user settable parameter of the algorithm. 

Proof:  The proof follows by induction on the number of rounds.  Fix w.  The base case is when 

we have only one round.  In that case communicator[0] contains all of the processors and 

we call BalanceWork() on that communicator so all of the processors will end up having the 

same amount of work.  Inductively assume the algorithm balances the work for (NumRounds-1) 

rounds, and now examine what happens if we have one more round.  The total number of 

processors N=2n may not be a power of 2w, ie. n may not be evenly divisible by w, so the last 

round will have a communicator of size 2w’, where w’ is given by: 

𝑤′ = �𝑤,                   if  𝑛 mod 𝑤 = 0
𝑛 𝑚𝑜𝑑 𝑤,       if  𝑛 mod 𝑤 ≠ 0   

Table 9 shows the binary digits of processor ranks. Each column in the table is already 

load balanced by the inductive hypothesis.  The inductive step is the last round of load balancing 

which balances each row.  There are 2n-w’ rows.  Since each column is already balanced and then 

we balance each row, we end up with all processors being load balanced.  
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Table 9: Binary digits of processor ranks. 

 

Already 

Balanced 

Group 000 

Already 

Balanced 

Group 001 

Already 

Balanced 

Group 020 

Already 

Balanced 

Group 011 

Already 

Balanced 

Group 100 

Already 

Balanced 

Group 101 

Already 

Balanced 

Group 110 

Already 

Balanced 

Group 111 

000  0..00 001  0..00 010  0..00 011  0..00 100  0..00 101  0..00 110  0..00 111  0..00 

000  0..01 001  0..01 010  0..01 011  0..01 100  0..01 101  0..01 110  0..01 111  0..01 

000  0..10 001  0..10 010  0..10 011  0..10 100  0..10 101  0..10 110  0..10 111  0..10 

000  0..11 001  0..11 010  0..11 011  0..11 100  0..11 101  0..11 110  0..11 111  0..11 

…        

000  aj..a1a0 001  aj..a1a0 010  aj..a1a0 011  aj..a1a0 100  aj..a1a0 101  aj..a1a0 110  aj..a1a0 111  aj..a1a0 

…        

000  1..11 001  1..11 010  1..11 011  1..11 100  1..11 101  1..11 110  1..11 111  1..11 

 

Table 9 illustrates the processor groupings.  In the last round we will have 2w’ columns of 

processors.  Each column has 2n-w’ rows, and the processors within each column are all balanced 

and have the same amount of work by the inductive hypothesis.  A communicator is constructed 

for each row and contains one processor from each balanced group.  BalanceWork() is then 

called on that communicator to balance each row, and since the processors in each column 

contain the same amount of work by the inductive hypothesis, now the all the processor ranks 

are load balanced. 

We have just proved correctness of the algorithm.  Now we will address computational 

complexity of each round of the algorithm.  Each round of the algorithm calls 

MPI_Allgather() for a message of size 1, on a communicator of size 2w, so the cost of that 

Size of last communicator = 2w’.   (w’ = 3 in this example) 
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call is Θ(2w).  We also call BalanceWork() on a communicator of size 2w, and we have 

already proved that has computational complexity of Θ(w2w).  So the computational complexity 

of each round of the algorithm is Θ(w2w). 

The total computational cost of the algorithm can be broken down into the cost of each 

round, times the number of rounds.  The pseudocode clearly shows that  

NumRounds = Ceiling( log2(N)/w ) 

and we just proved that the cost of each round is Θ(w2w).  As a result, 

Total Cost = (Cost of each round)*(NumRounds) = Θ(w2w) * Θ(log2(N)/w) = Θ(2w log2(N)) 

QED. 

4.6 Results 
The cost of the load balancing algorithm is Θ( 2w log2(N) ), where w is a user settable 

parameter.  So the question is how should we select the optimal values of w?  When w=1 we get 

the “partner processor” load balancing algorithm described in Section 4.3, with cost Θ(log2(N)).  

When w=log2(N), we get Θ(N log2(N)), which is not scalable. 

Since each round of the algorithm has to do communication, there is some latency, λ, 

associated with each round of communication that depends on the network interconnect of the 

supercomputer being used.  We therefore model the time for each round as 

Time of each round = w2w + λ 
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The total number of rounds is log2(N)/w  (leaving off the ceiling for simplicity), so the 

total time is (w2w + λ)log2(N)/w.  The total time will be minimized when its derivative with 

respect to w is 0: 

 
𝑑
𝑑𝑤

�
𝑤2𝑤 + λ

𝑤
�  = 0 

which happens when 

w2 2w ln 2 = λ  

Neglecting w2 which is small relative to 2w for large w this is approximately:  

w ≈ log2(λ / ln 2) 

The total time will be minimized when w ≈ log2(λ/ln 2).  So if the network latency λ is 

large, this suggests a larger value for the parameter w.  A larger value for w causes the algorithm 

to have fewer rounds.  Since the network latency is large, this will reduce total runtime since we 

pay the network latency cost less often.  Conversely if the network latency is small, then we 

select a smaller w, do more rounds of communication, and pay less per round since the latency is 

small.   

We examined the full parameter space for w=1,2,3,…,17 for a scaling study on the Dawn 

supercomputer [6] for processors counts 20, 21, 22, …, 217.  Figure 38 shows the results of this 

scaling study. 
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Figure 38: Load balancing wall time vs. log2(Num_Processors).  
Figure 38 shows 5 curves, each curve has a different value for the w = width parameter.  

When the width parameter is w, the Group Size is 2w.   When the Group Size = 21, this is exactly 

the same as the partner processor algorithm described in the beginning of this chapter, and we 

obtain the exact same result (this time plotted on a log-log scale, whereas before it was plotted on 

a log-linear scale in Figure 34).  We see the logarithmic runtime Θ(log2(N)) when w=1, just as 

before.  The group size cannot be larger than the total number of processors, so we limit the 

group size to be at most the number of processors.  When the group size is 217, we see that the 

algorithm performs scalably up to about 210 processors, but at large numbers of processors we 

see non-scalability of that parameter choice, since in this case the runtime scales like Θ(N 

log(N)).  When the group size is 25, we see the “step function” behavior of the run time at the 

multiples of 5 on the log2(Num_Processors) scale.  These discontinuities in run time happen 

when we need to do one more round of communication; recall NumRounds = Ceiling( log2(N)/w 

), so we see the discontinuities of the ceiling step function show up in the graph.  The same 

discontinuities occur with Group Size 29 when log2(Num_Processors)=9 and with Group Size 213 

when log2(Num_Processors) =13.  On the Dawn supercomputer, the best choice of Group Size is 
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29, since that curve is almost always the fastest for all processor counts (except when 

log2(Num_Processors)=10 in which case Group Size 217 (which gets floored to 210) is slighly 

faster).  Therefore, instead of using the basic partner processor load balancing algorithm, we 

balance in groups of size 29, and pay slightly more per round, but with the big advantage that we 

have 9 times fewer rounds. 

Now we will look at the same data from a different perspective.  Instead of each curve 

representing the same group size, in Figure 39 each curve represents the same number of 

processors, and we vary the group size as a parameter and look for a minimum. 

 

 

 

Figure 39 shows 5 curves, varying the Processor Group Size to find the value of that 

parameter that minimizes the run time.  The Processor Group Size cannot exceed the total 

number of processors, so the Processor Group Size is always bound by the number of processors.  

Examine the plot for 217=131072 processors, recall NumRounds = Ceiling( log2(N)/w ), so when 
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N=217, NumRounds = Ceiling( 17/w ).  As w=Log2(ProcessorGroupSize) increases from 1 to 9, 

we see the time decreasing like Ceiling( 17/w) (in fact we see a plateau at w=6,7,8 since Ceiling( 

17/6 ) = Ceiling( 17/7 ) Ceiling( 17/8 ) = 3 ).  The cost of each round is w2w + λ, and w2w is 

small compared to λ when w=1,2,…,9.  As w continues to increase, the cost of each round 

becomes significant, and the fact that we need fewer rounds does not make up for the extreme 

cost of each round.  For w=10,11,12,…,17, the run time increases since each round is so 

expensive.  For all processor counts, the minimum is attained at w = Log2(ProcessorGroupSize) 

= 9, so we have chosen a default value of w = 9 for the Dawn supercomputer. 

4.7 Conclusions 

We have developed, implemented, and demonstrated correctness of a scalable load 

balancing algorithm that has a computational complexity of Ο(log(N)).  This algorithm globally 

balances all of the processors’ work without globally knowing what the work distribution looks 

like.  Through a sequence of local operations, global load balance can be achieved.  We ran a 

scaling study up to 221=2,097,152 processors on the Sequoia (IBM BG/Q) supercomputer at 

Lawrence Livermore National Laboratory, and the observed results agree very well with the 

theoretical predictions.  We believe that this algorithm applies to a broad class of homogeneous 

load balancing problems where the units of work all cost the same amount and any processor can 

process any unit of work.  This algorithm allows for load balanced computations on the next 

generation of supercomputers with millions of cores.  The new algorithm represents a significant 

improvement over our previous algorithm, which would have taken 17 days on 2 million 

processors of Sequoia, while this new algorithm takes less than 1 second. 
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We implemented a parameterized version of the load balancing algorithm where the user 

may select the Processor Group Size parameter which is the number of processors to group 

together when doing a local load balance step.  Instead of load balancing processors 2 at a time, 

the general algorithm load balances processors in groups of size 2w.  We analyzed a performance 

model of the algorithm to select the best choice of this parameter to minimize the run time.  We 

ran a scaling study exploring the entire parameter space and found that a Processor Group Size of 

29 was the best choice for the Dawn (IBM BG/P) supercomputer.   
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5 Scalable Global Particle Find 

The problem that we are trying to solve in this chapter is how to communicate particles to 

the correct processor that owns the geometric space in which the particle is located.  Particles 

may be sourced on a processor that does not own the background geometry of the particle, so the 

particle needs to be communicated to the processor that owns the background geometry.  If a 

particle is created as a result of a nuclear collision of an in-flight particle with a background 

material, then the created particle is already on the correct processor, since that is a local 

operation.  Particles can also be created from an external user defined source, where the 

particle’s coordinates are defined by sampling a user specified probability distribution function.  

In this case we cannot guarantee that the particle’s coordinate will be local to the processor that 

samples it, in which case the new particle will have to be communicated to the correct processor 

before it can be tracked. 

The remainder of this chapter is organized as follows.  Section 5.1 describes the algorithms 

needed to communicate particles to the correct processor.  Section 5.2 shows the results of a 

scaling study where the algorithm was run up to 218=262,144 MPI processes. Section 5.3 gives 

the conclusions of this chapter and suggests future areas of work. 

5.1 Globally Resolving Particle Locations on the Correct Processor  

In the new particle sourcing algorithm, each processor samples from the user-specified 

spatial distribution which can create particles on the wrong processor in domain decomposed 

problems. (A particle is on the right processor if the particle’s coordinate is owned by a domain 

on the processor, conversely a particle is on the wrong processor if its coordinate is not on a 

domain owned by the processor.  Processors can only operate on particles that reside within the 
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domains the processor owns.)  Before Mercury can begin the particle transport, it must first 

communicate every particle to the correct processor that owns that portion of the geometry [52], 

[53]. 

Each processor owns some set of spatial domains that determines the background 

geometry on which the processor can track particles.  If a particle is within that geometry, then 

that processor can work on that particle; if not, the particle must be communicated to the correct 

processor that owns that background geometry.  Our old (non-scalable) algorithm for 

communicating particles to the correct processor stored bounding box information for all of the 

domains in the problem.  This algorithm is not scalable, since this memory requirement grows 

linearly with the number of processors. 

Figure 40 shows a particular test case where each processor sources in particles uniformly 

over the entire problem.  Consider the lower left (red) domain in the figure.  That domain sources 

particles uniformly over the entire problem, which can create particles that are outside of the red 

domain.  Those particles need to be communicated to the correct processor that owns that section 

of geometry.  Every processor is in a similar situation, so all of the particles must globally 

resolve their locations to end up on the correct processor. 
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One possible solution to this problem is to reuse the existing particle tracking software to 

communicate particles to the correct processor.  Figure 41 shows a diagram of this approach.  

Each particle is marked as being in the red domain, then the particle’s trajectory and time to 

finish is reset and it is tracked to the correct location.  When it reaches the correct final location, 

the trajectory is reset to the original value.  This approach is appealing, because it reuses the 

existing particle tracking code and works well if the particles are “close” to the correct domain.  

But we will show that this algorithm is not scalable if most of the particles are “far” from the 

correct domain.  This algorithm also does not work for non-convex problems. 

 

 

Figure 40: The lower left (red) processor can source in particles over the entire 
problem, not necessarily restricted to be within its geometry. 

Figure 41: Use the existing particle tracking software to communicate particles 
to the correct processor. 
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Claim: Using particle tracking to resolve particle locations is not scalable as the processor count 

increases.  

Proof:  Consider a problem that has a 1D domain decomposition and a spatially homogeneous 

source, as show in Figure 42.  Each processor creates particles uniformly over the entire 

problem, so the processors on the left half create NumParticles/2 total particles, NumParticles/4 

of which are created on the right half, which is the half not owned by the processors!  Similarly 

NumParticles/4 particles are created by the right half of the processors with particle coordinates 

on the left half, hence they are also on the wrong processor.  So that means NumParticles/2 

particles must be communicated through the center red domain, which is not scalable.  QED.   

The center processor sees too much of the global flow of particles, because particles can 

only flow to adjacent domains.  One solution is to allow particles to “hop” to “distant” neighbors.  

By carefully choosing a domain’s distant neighbors, we have designed an algorithm that globally 

resolves the particle locations in a scalable fashion. 

 

           

 

 

For the new scalable algorithm, each processor generates O(log(N)) “distant” neighbors 

(where N = number of processors), to form a communication graph for sending particles to the 

Figure 42: 1D domain decomposed problem showing a “bottleneck” at the center 
domain. 

 NumParticles/4  NumParticles/4 
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correct processor.  Each particle on the “wrong” processor is then sent to its nearest neighbor 

(among the domain face neighbors and the distant neighbors).  This algorithm is iterated until 

each particle is on the correct processor. 

 This algorithm creates a hypercube graph to connect the processors, so in O(log(N)) 

iterations, each particle is on the correct processor.  A hypercube is a graph G=(V, E) where 

V = {0,1,…,N-1} = Set of processor ranks 

E = {(a, b): a and b differ in exactly one binary digit} 

Figure 43 shows an example of a hypercube graph on 8 nodes.  Let N = |V| be the number of 

nodes in the graph; then there are log2(N) digits in the binary representation of the processors’ 

ranks {0 ≤ rank < N}.  Each node has log2(N) neighbors.  All nodes are at most log2(N) hops 

apart, and this maximum distance occurs when two processor ranks a and b differ in every binary 

digit. 

 

 
Figure 43: A hypercube on 8 nodes. 

000 001 

010 011 

100 101 

110 111 
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If a particle is not on the correct processor, then we must first locate the “closest” neighboring 

domain to which to send the particle.  We are only dealing with Cartesian domain 

decompositions, so we have implemented a greedy algorithm that always selects the closest 

neighboring domain at every step.  At each iteration, the particle gets closer to its home 

processor, so the algorithm is guaranteed to terminate.  Figure 44 shows an example of the 

communication path a particle takes to get from the processor it was created on to the processor 

it belongs on. 

 

       1st hop                        2nd hop                         3rd hop                      4th hop 

 

Figure 44: Example of a particle finding the “closest” neighbor to find its way to the 
correct processor. 

The algorithm first checks to see if the particle coordinate is owned by the current 

processor; if so, keep the particle and begin the particle tracking.  If not, we must find the 

neighboring domain that is “closest” to the particle’s coordinate.  A naïve implementation would 

be to linearly search through a domain’s six face neighbors (a cube has six faces) and its log2(N) 

distant neighbors.  But instead of linearly searching through the list of neighbors, we can put all               

6 + log2(N) neighbors in a k-d tree, and use that to search for the closest neighbor.  A k-d tree is 

a data structure used for quickly finding an object based on position [54].  The objects can be 

▀ Current Processor            ▀ Face Neighbors               ▀ Distant Neighbors 
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partitioned in either the x, y or z direction, depending on which direction gives the most even 

partition of objects.  Figure 45 shows an example of domains stored in a k-d tree.  The vertical 

red line is the highest level partition, which divides the neighbors into 2 groups, those less than 

the line and those greater than the line.  We proceed recursively, dividing each side.  The 

horizontal green lines partition each half into domains less than and greater than the green lines.  

This is an efficient partitioning of the domains so that the algorithm can find the closest domain 

with a run time proportional to the logarithm of the number of entries in the k-d tree. 

 

 

Figure 45: An example of domains stored in a k-d tree. 
 

The time required to find the nearest neighbor is proportional to the log of the number of 

neighbors; we have O(log(N))  neighbors, so the algorithm requires O(log(log(N))) time.  The 

total runtime is the number of iterations (maximal distance between vertices in a hypercube 

graph = O(log(N)) ) times the cost per iteration or  

Total runtime = O( log(N) log(log(N)) ) 
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5.2 Results 

In this section we examine an infinite medium weak scaling test problem.  The test 

problem uses 3D domain-decomposed combinatorial geometry and is a Uranium-235 infinite 

medium (reflecting boundary conditions) criticality test problem.  Each processor has 1 domain 

which is a 1cm cube.  10,000 particles are tracked per processor.  Each time we double the 

processor count, we double the size of the geometry as illustrated in Figure 46.  Each processor 

sources particles uniformly over the entire geometry, so the particles need to be communicated to 

the correct processor before transport can begin. 

 

Figure 46: Illustration of geometry scaling with processor count scaling. 
 

Figure 47 shows a graph of the distribution of the number of communication hops that are 

required to put every particle on the correct processor for different numbers of processors.  

Figure 47 is plotted on a linear scale and seeing the tails of the distribution is difficult.  So Figure 

48 plots the same information on a log scale.  The log scale clearly shows the tails of the 

distribution.  As the number of processors increases, more hops are required to communicate the 

particles to the correct processor.  In fact, the maximum number of hops required by any particle 

is what determines the total number of communication iterations required to send the particle to 

the correct processor.   

   
  

  

  

  

  

  

1x1x1 2x1x1 2x2x1 2x2x2 
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Figure 47: Distribution of the number of communication hops on a linear scale. 
 

 

Figure 48: Distribution of the number of communication hops on a log scale. 
 

Figure 49 is a plot of the maximum number of communication hops required to 

communicate all of the particles on the correct processor versus the number of processors.  This 

graph shows the approximate relationship: 
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Max number of communication hops ≈ log2(Num_Processors) 

This result is a very nice property for scalability.  We want the total runtime of the algorithm to 

be scalable, and in order for that to be possible, the total number of communication hops must 

also be scalable. 

 

Figure 49: Maximum number of communication hops vs. Log2(Num_Processors). 
  

Figure 50 shows the particle tracking time vs log2(Num_Processors) for this infinite 

medium problem.  The particles are sourced on the first cycle.  The first cycle is more expensive 

than subsequent cycles, since particles must first be communicated to the correct processor 

before the particle physics can begin.  The scaling behavior of the first cycle shows the particle 

tracking cost plus the cost of communicating particles to the correct processor.  This test problem 

is a weak scaling test problem, so the particle tracking cost should be exactly the same 

independent of the number of processors.  As a result, any increase in wall time when the 

number of processors is increased is due to the overhead of the communication algorithm to send 

particles to the correct processor.  At the low end of the scale, 26 = 64 processors, the first cycle 
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takes 19 seconds. At the high end, 218 = 262,144 processors, the first cycle takes 199 seconds.  

This domain decomposed Monte Carlo particle transport on a quarter of a million processors is a 

challenging problem.  Future work will focus on improving this algorithm.  The second cycle 

and last cycle scale very well.  The only parallel overhead in those cases is the particle streaming 

communication and the “test for done” algorithm, which is described in Chapter 7.  No particle 

source exists after the first cycle, so the “particle hopping” algorithm is not used after the first 

cycle of this problem.  The second cycle and last cycle curves demonstrate excellent scaling of 

the particle streaming communication and of the new scalable test for done algorithm. 

 

Figure 50: Tracking Time vs. Log2(Num_Processors). 
 

Figure 51 shows the results of a weak scaling test for which we run up to 215=32,768 

processors.  Each processor owns 1 out of N domains, but sources particles uniformly over the 

entire problem space.  Therefore most particles are initially on the wrong processor and need to 

be communicated to the correct processor.  This plot shows the scaling behavior of 

communicating particles to the correct processor.  Up to 32,768 processors, this algorithm looks 
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very scalable.  However, Figure 50 shows three more data points at 216, 217, and 218 processors 

that show significant increase in time compared with the smaller processor counts. 

 

Figure 51: Scaling results of the new global particle find algorithm. 
 

5.3 Conclusion 

We have implemented a scalable algorithm to globally resolve particle locations and to 

communicate particles to the correct processor.  A crucial part of the algorithm is the 

introduction of “distant neighbors” that allow particles to take larger “jumps” toward their 

correct domain.  The distant neighbors are formed by creating a hypercube graph, where the 

maximum distance between any two nodes in the graph is O(log(N)).  A weak scaling study was 

run on the algorithm up to 218 = 262,144 MPI processes on an infinite medium test problem.  We 

observed excellent scaling behavior up to 215 = 32,768 MPI processes and observed some 

slowdown after that.  In future work we will experiment with different distant neighbor networks 

to determine if the scalability to large numbers of processors can be improved.
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6 Visualizing Constructive Solid Geometry 

6.1 Introduction 

Validation of the problem definition and analysis of results (tallies) produced during a 

Monte Carlo particle transport calculation can be a complicated, time-intensive processes.  The 

time required for a person to create an accurate, validated combinatorial geometry (CG) or mesh-

based representation of a complex problem, free of common errors such as gaps and overlapping 

cells, can range from days to weeks.  The ability to interrogate the internal structure of a 

complex, three-dimensional (3-D) geometry, prior to running the transport calculation, can 

improve the user's confidence in the validity of the problem definition.  With regard to the 

analysis of results, the process of extracting Monte Carlo physics tally data from printed tables 

within a file is laborious and not an intuitive approach to understanding the results.  The ability 

to display tally information overlaid on top of the problem geometry can decrease the time 

required for analysis and increase the user's understanding of the results. 

In this chapter, we discuss the integration of VisIt [55], [56], [57], [58], [59] a parallel, 

production quality full featured visualization and data analysis tool into Mercury, a massively 

parallel Monte Carlo particle transport code.  VisIt provides an API for real time visualization of 

a simulation as it is running.  A user may select which plots to display from the VisIt GUI or by 

sending VisIt a Python script from Mercury [60].  A user may set the frequency to update the 

plots and watch the simulation evolve as it is running. 

Rather than reinventing the wheel by writing custom software to visualize our Monte Carlo 

particle transport calculation results, we chose to use VisIt, an existing scientific visualization 

and data analysis tool.  Mercury was already able to write restart files and graphics files that 
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could be opened for post-processing visualization in VisIt.  This chapter focuses on connecting 

Mercury and VisIt in memory, through VisIt API function calls which give VisIt the data that it 

needs for plots, based on user requests.  

VisIt is capable of visualizing domain decomposed mesh based data on structured and 

unstructured meshes.  This capability is used to visualize Mercury’s mesh-based geometry.  VisIt 

can also visualize “point” based data, which is used to visualize Mercury’s particle-based data.  

A relatively new feature in VisIt is the ability to discretize and visualize Constructive Solid 

Geometry (CSG) data (a.k.a. Combinatorial Geometry or CG).  An API exists to give VisIt the 

coefficients of the surfaces that define the cells and to tell VisIt how the surfaces are combined 

together to form cells.  VisIt will then automatically discretize and visualize the CG data.  Before 

VisIt had the ability to directly visualize CG data, Mercury would convert its internal CG data 

into mesh based data by introducing a graphics mesh over the CG and sampling the CG at the 

mesh points.  If a mesh cell intersected multiple CG cells, a “mixed” mesh cell is created that 

contains the volume fractions of the partial CG cells.  This mesh sampling algorithm will be 

described in detail later in Section 6.4. 

Mercury has an interactive Python prompt, and a user may issue the “visit()” command to 

launch VisIt and have it connect to the simulation.  Then a user may select the plots they would 

like from VisIt’s GUI.  Alternatively, a user may request plots directly from the Mercury Python 

prompt by feeding VisIt a Python script, such as: visit(‘myScript.py’).  This will hand the 

contents of the python script ‘myScript.py’ to VisIt for visualization.  As part of the Mercury 

input, a user may set the frequency at which the VisIt plots are updated as the simulation is 

running. 
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The remainder of this chapter is organized as follows.  Section 6.2 highlights some of the 

most useful plots for Mercury users of VisIt, such as a particle pseudocolor plot and a 

background material plot.  Section 6.3 discusses the inline Mercury-VisIt interface by which a 

user may visualize the simulation results in real time with VisIt.  Section 6.4 covers all of the 

available methods for visualizing constructive solid geometry.  Some of the methods are based 

on introducing a graphics mesh on which to overlay the CG, while other methods use ray casting 

or rely on VisIt itself to discretize the CG.  Section 6.5 provides an analysis of the numerical 

convergence of the volume calculation of CG cells using the mixed cell method.  Section 6.6 

discusses geometry error detection by the automatic detection of gaps and voids.  Section 6.7 is a 

gallery of images that have been produced with Mercury and VisIt.  Finally Section 6.8 provides 

the conclusion of the combinatorial geometry visualization chapter. 

6.2 Types of Visit Plots 

VisIt has many different types of plots such as mesh, material, pseudocolor, domain, curve, 

histogram, contour, particle, vector, label and volume rendering.  VisIt also has many operators 

that a user can apply to the plots such as clipping and material sub selection.  Material sub 

selection is a very useful operator in VisIt. This approach is used for turning on or off any 

material in the problem, so a user can focus on exactly what they are looking for while hiding 

what they are not interested in. 

We will now illustrate many of the available plots in VisIt as applied to the “Criticality of 

the World” test problem.  The problem definition is a 7 x 7 x 7 lattice of Uranium-235 spheres, 

each of radius 5.0cm, except for the center sphere which is of radius 8.7407cm.  The density of 

all of the spheres is 19.1 g/cm3.  The centers of all of the spheres are 24cm apart.  Low density 

Uranium-235 (10-10 g/cm3) surrounds the lattice.  All of the spheres are subcritical except the 
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center sphere.  The initial source of particles is the lower corner sphere.  We run a Static-K 

calculation and watch the particles “find” the center sphere.  We run the problem with 100,000 

simulation particles per iteration.  Note this is not the same Criticality of the World test problem 

described in Chapter 2. 
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Mesh Plot  

As part of the user input, we have requested a 100x100x100 cell graphics mesh to be overlaid 

on the CG for visualization.  See Figure 52 for two plots: 

a) We ran this problem on 64 processors, so the graphics mesh is automatically divided into 

64 domains; each processor samples the CG for only its domain. 

b) Here we are plotting the mesh and materials, but we have used VisIt’s material sub 

selection feature to turn off the low density Uranium. 

 

 
Figure 52: (a) Mesh + Domain plot.          (b) Mesh + Material plot, low density U 
turned off. 
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Material Plot  

Figure 53 is a material plot of both the underlying geometry and of the particles.  Every 

graphics mesh zone has a material associated with it (or multiple materials for mixed cells).  

Every particle also has a background material associated with it.  We have lowered the opacity of 

the low density filler Uranium to make it look transparent.  We have turned off the high density 

Uranium completely.  We are also plotting the particles by material, so we see the particles in 

place of the high density Uranium.  The particle distribution has not yet converged, so we can 

see some remnants of the initial particle source in the lower-left sphere.  

 

Figure 53: Transparent material plot. 
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When plotting particles in VisIt, a user may plot them simply as “points” as in Figure 54 

(a), or they may plot them as “spheres” as in (b).  In (c) we are plotting both the particle material 

and the background material.  In (d) we are plotting the background material, with the low 

density Uranium with reduced opacity so we can see through it. 

 

(a) Particle Material, plotted as “points”.  (b) Particle Material, plotted as “spheres”. 

 

 (c) Particle and background material.   (d) Background material. 

 
Figure 54: Various material plots. 
 

117 
 



Pseudocolor Plot 
 

A pseudocolor plot maps values to colors.  We have used the material sub selection to 

turn off the filler material.  Figure 55 has two plots: 

(a)  We are plotting CG cell index.  We can see that the range of values is 0 to 343, for a total of 

344 cells, which is 73 + 1 (7 by 7 by 7 lattice + 1 for filler).  This plot is extremely useful for 

debugging.  This plot along with VisIt’s “Pick” tool allows a user to click on a cell, and VisIt 

will tell the user the CG cell index.   

(b) This is a pseudocolor plot of the log of neutron number density, which is essentially the 

eigenvector associated with the Keff eigenvalue.  VisIt allows linear or logarithmic color scales, 

which can be used to “spread” out the color values, depending on the range of values in the data.  

In this case the “log” scale shows more color range than the “linear” scale.

 

Figure 55: (a) Pseudocolor plot of CG cell index. (b) Pseudocolor plot of log(neutron number density) 
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Domain Plot 

The user specifies the physical extents of the graphics mesh and the number of zones in 

each (x,y,z) direction.  Then Mercury automatically domain decomposes the graphics mesh into 

N domains, where N is the number of processors the simulation is run on.  In this case, we ran 

the problem on 64 processors, so we have 64 domains.  In Figure 56, we are coloring each 

domain a different color to show the domain decomposition of the graphics mesh.  This makes 

the generation of the graphics mesh faster, since each processor has to discretize only a portion 

of the entire problem.  Chapter 2 describes the combinatorial geometry domain decomposition in 

detail.  In Figure 56(b), we have turned off the low density filler material and are coloring the 

spheres by domain.  Figure 56(b) also shows a wireframe plot of the domain boundaries. 

 

Figure 56: (a) Domain plot.                                   (b). Wireframe domain plot with filler 
material hidden. 
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Curve Plot 

Figure 57 is a plot of the iteration history of: 

1. Instantaneous K (red) 
2. Average K (green) 
3. Average K + Standard Deviation (cyan). 
4. Average K – Standard Deviation (blue). 

 
As the iteration count increases, the standard deviation decreases and Average K converges [43].  

A “discontinuity” of Average K occurs at 34 iterations, because we do 34 initial “transient” 

iterations to let the particle distribution become stationary.  We then throw out the transient 

iterations and compute Average K and the Standard Deviation of K after the transient iterations.

 

Figure 57: Curve plot. 
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Histogram Plot 

Figure 58 is a histogram of the number of particles at a given kinetic energy, on a log-log 

scale.  This type of plot is very useful for seeing the energy distribution of the particles.  The 

histogram plot is also useful for looking at the particle weight distribution.  A user can make a 

histogram plot of any particle or mesh based data. 

 
Figure 58: Histogram plot. 
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Volume Rendering Plot 

Visit can do volume rendering of mesh based data as in Figure 59 (a), (b), (c) and (e), or 

particle data as in (d).  In (a), (b) and (c) we are looking at mass density, as we vary the number 

of volume rendering samples.  With a low number of samples (as in (a)), the image looks fuzzy.  

As a user increase the number of samples, the image becomes sharper (as in (c)). 

 
         (a) 50,000 Samples.  (b) 500,000 Samples.  (c) 5,000,000 Samples. 

 

 
Figure 59: (d) Volume rendering of particle KE.  (e) Volume rendering of neutron number density. 
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Particle Plot 

The Monte Carlo particles can be colored by any field defined on the particles.  Figure 60 

shows two plots: 

(a) Shows the particles colored by Kinetic Energy.  This gives a user an indication of the 

particle distribution in energy and space.  A concentration of particles exists in the center sphere, 

and since the eigenvector has not yet converged, some remnants of the initial particle source 

exist in the lower left sphere.   

(b) Shows the particles colored by which CG cell they are in.  This is very useful for 

finding particle tracking bugs.  The human eye easily spots an incorrectly colored particle.  A 

user can also use “discontinuous” color scales so adjacent cells have drastically different colors 

instead of continuously varying colors, which would make it harder to identify a particle colored 

by the incorrect cell index. 

 
Figure 60:  (a) Particles colored by KE.    (b) Particles colored by CG cell index. 
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Vector Plot 

Figure 61(a) shows each particle’s velocity vector.  Since this data can be very dense, 

VisIt has an option to specify the stride of which particles to draw.  For example, in Figure 61(b), 

the stride is 16 and we are plotting every 16th particle.  The vectors are colored by magnitude. 

 
Figure 61:  (a) Every particle.     (b) Every 16th particle. 
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6.3 Using the Inline Interface 

6.3.1   Time Evolution of the Criticality of The World Problem 

Figure 62 shows screen captures of a running simulation, as the Static-K iterations are 

increasing.  At each iteration, we plot four quantities in different VisIt windows.   

Upper left: Pseudocolor plot of log(neutron 
number density) 

Upper right: Curve plot of iteration history of: 
K, Average K, Average K ± StdDev 

Lower left: Particle plot of log(particle KE) 
 

Lower right: Curve plot of Flux Entropy 
(eigenvector convergence diagnostic). 

 

  
Figure 62:  (a) Iteration 1   (b) Iteration 6    (c) Iteration 63 
Figure 62 shows the evolution of these plots at iterations 1, 6, and 63. 

(a)  Iteration 1: We do not have enough data for the curve plots, so they are blank.  After only 1 

iteration, the particles are still concentrated around where they were initially sourced, in the 

lower left sphere.   

(b) Iteration 6: Particles are still wandering around, being concentrated around the lower sphere.   

(c) Iteration 63:  The particles have “found” the center sphere and the particle distribution is 

stationary.  A discontinuity exists at iteration 34 of Average K, since we told Mercury to do 34 

initial “transient” iterations so the particles could find their natural distribution for this problem.  

After iteration 34 we begin averaging to calculate Average K. 
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Figure 63 is VisIt’s user interface window that allows a user to record their mouse clicks, 

and it will translates a user’s mouse clicks into a python script.  The script can then be “played” 

back to achieve the exact same behavior as the mouse clicks.  A user can also save the text to a 

python file that can be handed back to VisIt from the interactive Mercury python prompt, as 

shown in Figure 64.  For example, we save the script to a file named ‘cow.py’, and then at the 

Mercury python prompt, we type visit(’cow.py’) to feed the python script to VisIt.  As a result, 

we can quickly recover all of the plots, without having to re-select them in the VisIt GUI. 

 
 
Figure 63: VisIt’s Commands GUI. 
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Figure 64:  Example VisIt  python script.

################################################################################ 
# File Name: cow.py 
# Purpose: This is an example python script that sets up 4 VisIt Windows. 
# 1. Pseudocolor plot of: log(particle number density) 
# 2. 4 curve plots: K, K Ave, K Ave + StdDev, K Ave - StdDev. 
# 3. Pseudocolor plot of log(particle KE) 
# 4. 1 curve plot: Flux Entrop 
# Usage:  Mercury>  visit('cow.py') 
################################################################################ 
def setMyView(): 
  # Set view 
  View3DAtts = View3DAttributes() 
  View3DAtts.viewNormal    = (-0.973501, 0.0961496, -0.207485) 
  View3DAtts.focus = (72.5, 72.5, 72.5); View3DAtts.viewUp = (0.12,0.99, -0.10) 
  View3DAtts.viewAngle  = 30;        View3DAtts.parallelScale = 134.234 
  View3DAtts.nearPlane  = -268.468;  View3DAtts.farPlane      = 268.468 
  SetView3D(View3DAtts) 
SetWindowLayout(4) 
 
SetActiveWindow(1) # Window 1, Pseudocolor plot of log(particle number density) 
SetActivePlots(tuple(range(GetPlotList().GetNumPlots()))) 
DeleteActivePlots() 
AddPlot("Pseudocolor", "MC_Number_Density_Neutron", 1, 0) 
TurnMaterialsOff() 
TurnMaterialsOn(("Uranium_235")) 
PseudocolorAtts = PseudocolorAttributes() 
PseudocolorAtts.scaling = PseudocolorAtts.Log 
PseudocolorAtts.minFlag = 1 
PseudocolorAtts.min     = 1e-11 
SetPlotOptions(PseudocolorAtts) 
setMyView() 
DrawPlots() 
 

SetActiveWindow(2) # Window 2, Curve plot of K, K Ave, K Ave + StdDev, K Ave - StdDev 
SetActivePlots(tuple(range(GetPlotList().GetNumPlots()))) 
DeleteActivePlots() 
AddPlot("Curve", "k Eigenvalue", 1, 0) 
AddPlot("Curve", "k Eigenvalue Ave", 1, 0) 
AddPlot("Curve", "K - Std Dev", 1, 0) 
AddPlot("Curve", "K + Std Dev", 1, 0) 
DrawPlots() 
 

SetActiveWindow(3) # Window 3, Pseudocolor plot of log(particle KE) 
SetActivePlots(tuple(range(GetPlotList().GetNumPlots()))) 
DeleteActivePlots() 
AddPlot("Pseudocolor", "Particles/kinetic_energy", 1, 0) 
PseudocolorAtts = PseudocolorAttributes() 
PseudocolorAtts.scaling = PseudocolorAtts.Log 
PseudocolorAtts.minFlag = 1 
PseudocolorAtts.min     = 0.1 
SetPlotOptions(PseudocolorAtts) 
setMyView() 
DrawPlots() 
 

SetActiveWindow(4) # Window 4, Curve plot of Flux Entropy 
SetActivePlots(tuple(range(GetPlotList().GetNumPlots()))) 
DeleteActivePlots() 
AddPlot("Curve", "Flux Entropy", 1, 0) 
DrawPlots() 
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6.4 Combinatorial Geometry Visualization Options 

Before VisIt had the ability to natively discretize combinatorial geometry, Mercury had to 

do the discretization itself, and write out a mesh, that VisIt could visualize.  The problem at hand 

is given the analytic surfaces that define the CG, how does one visualize them in a mesh 

visualization tool like VisIt?  We translate the CG representation to a mesh based representation 

by sampling the CG onto a graphics mesh which is then visualized in VisIt. 

6.4.1 Clean Cell Method 

The very first implementation looked like “Legos”.  The user defined a graphics mesh, 

and each graphics cell was assigned exactly one CG cell whose identity was chosen by asking 

“which CG cell is the center of each graphic cell in?”  Figure 65 shows an example of the output 

of the clean cell algorithm. 

 

Figure 65: Octant of a sphere visualized with the Clean Cell Method. 
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6.4.2 Mixed Cell Method 

In the mixed cell method, Mercury recursively samples points within each zone to get an 

accurate volume fraction of each CG cell within each graphics mesh cell.  Mercury only writes 

out volume fraction information and then relies on VisIt’s Material Interface Reconstruction 

algorithm to subdivide the graphics cells into parts corresponding to the volume fraction of the 

parts of the cell.  Figure 66 shows an example of the output of the mixed cell algorithm. 

 

Figure 66: Octant of a sphere visualized with the “Mixed Cell” method, relying on Visit’s 

MIR algorithm. 

Figure 67 illustrates how the Mixed Cell Method works.  If the four corners (eight 

corners in 3D) of a graphics cell all contain the same CG cell, the algorithm terminates.  If any of 

the corners contain different CG cells, the algorithm recursively subdivides the cell into four 

parts (eight parts in 3D) and continues sampling.  User settable parameters exist for controlling 

the minimum and maximum recursion limits.  The goal of the algorithm is to compute the 

volume fraction of each CG cell within each graphics cell.  VisIt uses the volume fraction 
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information to do Material Interface Reconstruction to attempt to reconstruct the position of the 

CG cell interface that divides the graphics cell.  Assume Figure 67 represents only one graphic 

mesh zone. The mesh lines are for illustration only; they are used for the algorithm to compute 

the volume fraction.  The output of the algorithm will converge to the volume fraction of the 

quarter circle in the square cell, volume fraction = (area of quarter circle)/(area of square) = π/4. 

 

Figure 67: Example of recursive volume fraction calculation. 
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6.4.3 Numerical Integration Method 

Instead of sampling points within each mesh zone to calculate the volume fraction of a 

CG cell within the mesh zone, the numerical integration method uses Mercury’s particle tracker 

to find the position of the CG surface that cuts through the mesh zone.  This algorithm uses a 2D 

numerical integration to calculate the volume fraction of a CG cell within the graphics mesh 

zone.  Then VisIt uses the volume fractions for its own Material Interface Reconstruction 

algorithm.  Given the height of the surface above the base of the graphics mesh cell, the 

algorithm uses a quadrature rule to find the volume below the surface.  See Figure 68 for an 

illustration of how this algorithm works. 

 

Figure 68: Illustration of numerical integration volume calculation. 
 

6.4.4 Conformal Method 

The conformal algorithm starts with a Cartesian graphics mesh and then “launches a 

particle” from every node in the graphics mesh.  If the particle intersects a CG surface before it 

reaches the neighboring node in the graphics mesh, that mesh node is moved to lie on the CG 
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surface.  The idea is to conformally move the graphics nodes directly onto the CG surfaces so the 

graphics mesh contains cells of exactly one material.  Since the mesh is only used for 

visualization and not for a finite difference or finite element calculation, it does not matter how 

distorted the graphics cells are.  We have developed an implementation of this algorithm that 

works well if the graphics mesh cell is cut by only one CG surface.  If more than one CG surface 

intersects the graphics mesh cell, then we revert to the “mixed” method and compute volume 

fractions of CG cells within the graphics mesh cell. 

Figure 69 compares the mixed cell method with the conformal method.  In the mixed cell 

method, we can see that the mesh is Cartesian.  Mercury has computed volume fractions of each 

CG cell within each graphics cell, and then VisIt is using its Material Interface Reconstruction to 

draw the CG cell boundaries.  In the conformal method, we can see that we started with a 

Cartesian mesh, and then moved the nodes onto CG cell boundaries.   

 

 

Figure 69:    (a) Mixed Cell Method  (b) Conformal Method. 
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Figure 70 shows a description of how the conformal algorithm works. 

              

(A). Move nodes of cut 
edges to nearest 
surface. 

(B). Now no edges are 
cut, but zones may be 
cut diagonally. 

(C). Move nodes 
diagonally to form clean 
zones. 

Figure 70: Description of conformal mesh algorithm. 
 

 Figure 71 shows an example of starting with a Cartesian Mesh (shown in a dashed line) 

and then moving the mesh nodes to the CG surface so that each mesh zones is clean.  Figure 72 

shows the 2D algorithm comparing the conformal method with the mixed cell method; the top 

half of the picture is the conformal method, and the bottom half is the mixed cell method.  The 

conformal method has all clean zones, and the zone boundaries lie along the CG surface 

boundaries.  The mixed method calculates volume fractions of each mixed cell, then VisIt’s MIR 

algorithm draws the material interfaces.  Figure 73 shows the 3D algorithm comparing the 

conformal method with the mixed cell method.  The mixed cell method is shown on the left half 

of the hemisphere, and the conformal method is shown on the right half of the hemisphere.  The 

conformal method has all clean zones, and the zone boundaries lie along the CG surface 

boundaries.  The mixed cell method calculates volume fractions, and then VisIt’s MIR algorithm 

draws the material boundaries.   
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Figure 71: Example of the Conformal method on a 2D mesh. 
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Figure 72: 2D Conformal method (on top) vs. mixed method (on the bottom). 
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Figure 73: 3D Conformal (right half) vs. Mixed (left half). 
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Now we examine the convergence of the volume of a sphere calculated by the Conformal 

Mesh algorithm.  Assume we have a sphere that has a volume of exactly 1.0, and then we 

examine the numerical error as a function of the number of zones.  We start with a uniform mesh 

around the sphere, and then run the Conformal Mesh algorithm to move nodes to the surface of 

the sphere.  Figure 74 is a graph of the volume error vs. the number of zones.  This was 

performed in both 2D cylindrical geometry and 3D Cartesian geometry.  2D cylindrical geometry 

has infinite azimuthal resolution, so it has less error than 3D for the same number of zones 

 

Figure 74: Conformal Volume Error vs. Number of Zones; for 2D and 3D test problem. 
 

.  Let N = the total number of zones, then the total error = (Error for one boundary 

zone)*(number of boundary zones).  See Table 10 for the theoretical analysis of how the error 

should behave as a function of the number of zones.  The error for one boundary zone can be 

calculated by considering the volume of a “spherical cap”, that is the error associated with 
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approximating a spherical surface with a plane within one zone. Similarly the area of a 2D 

circular segment can be calculated and then revolved to calculate the volume error for a single 

boundary zone in 2D.  The non-boundary zones are entirely within the sphere and have zero 

volume error. 

Table 10: Theoretical analysis for 2D and 3D conformal mesh volume error. 

 Error for one Boundary Zone Number of Boundary Zones Total Error 

2D N-3/2 N1/2 N-1 

3D N-4/3 N2/3 N-2/3 

 

6.4.5 Direct Visualization Through Ray Casting 

In this case we do not use VisIt for visualization at all.  Instead, Mercury draws directly 

to an image buffer that we display with the Python package pylab [61], [62].  We translate user 

mouse clicks into rotations, translations and magnifications by moving the particle source (which 

is the camera, in this case) and redoing a Mercury calculation to redraw the new frame.  Mercury 

knows how to track particles to CG surfaces and how to calculate the surface normal, so we color 

each CG cell by some field and then reduce the brightness of the color by the dot product of the 

incoming particle and the local surface normal: 

 ShadedColor = CellColor * |Dot(IncomingVisualizingParticle, FacetNormal)| 

Figure 75 shows an example of the output of the Mercury ray caster used to visualize various 

shapes. 
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Figure 75: Direct visualization through ray casting. 
No linear approximations are made with this method.  There is also no length scale 

requirement for this method.  If a user wants more detail, they can just continue to zoom in on a 

feature, and they will see features at any length scale.  This feature overcomes a disadvantage of 

the “mesh based” methods, which require a length scale for the mesh.  If a user continues to 

zoom in with mesh based methods, the resolution is limited by the finest mesh resolution.   

By adding separate left eye and right eye sources and image planes, we can also create a 

3D image with separate left eye and right eye images.  With special 3D hardware, we can 

visualize the left eye and right eye images independently.  Without the help of hardware, we can 

composite the images to create a 3D anaglyph that can be viewed with red-cyan glasses.  The 

composite image is formed by taking the red component of the left image and the green and blue 

components of the right image: 

(Redcomposite, Greencomposite, Bluecomposite) = (Redleft, Greenright, Blueright) 
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Figure 76 shows an example of a 3D anaglyph. 

 

Figure 76: 3D anaglyph created with left-eye and right-eye ray casting. 

6.4.6 Native VisIt Discretization and Visualization 

In the native VisIt discretization and visualization method, Mercury does not convert its 

internal CG representation to a mesh representation, rather it gives the CG representation directly 

to VisIt.  Mercury gives VisIt the coefficients of the analytic surfaces that define the cells, and 

how the surfaces are combined to form cells.  Then VisIt does an AMR discretization of the CG 

and creates an AMR mesh to visualize the CG.  Figure 77 shows an example of the output of this 

method. 
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Figure 77: Native VisIt discretization. The AMR mesh gets finer near the cell boundary.  

 
 

 

6.5 Mixed Cell Method: Algorithm Error Analysis 

In the Mixed Cell Method, Mercury recursively samples each graphics mesh cell, 

attempting to calculate an accurate volume fraction for each CG cell in the graphics mesh cell.  

This functionality can be used to calculate the volume of each CG cell in the problem (for an 

alternate volume calculation, see [63] and [64]).  In this error analysis, we have a sphere of 

radius 8.7407cm, centered at (0,0,0), contained in a single graphics mesh cell [0, 10] x [0, 10] x 

[0, 10].  So an octant of the sphere will be sampled.  We vary the min and max refinement level 

from 1 to 11.  We enforce min refinement = max refinement.  At refinement level n, there are 8n 

sample points,  i.e. in 3D we cut the cell in half in each of the 3 coordinate directions, 23 = 8.  

This is an octant of a sphere of radius 8.7407cm, so the exact volume is : 

      Volume( Sphere(8.7407) ) = 4/3 * Pi * 8.7407^3 / 8 = 349.6530057623cm3. 
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As we increase the refinement level by 1, we expect the error to go down roughly by 1/8th 

since each graphics cell is subdivided into 8 sub-cells.  Table 11 shows the volume error at each 

refinement level n=1,2,3,…,11. 

Define the error at refinement level n, E[n] = | exact volume – calculated volume | 

Table 11: Error analysis of recursive oct-tree algorithm for calculating volume fractions. 

Refinement 

Level 
Volume Error, E[n] 

Error Ratio            

E[n-1]/E[n] 
Calculated Volume 

1 4.36057623183E-02 
 

349.6094000000 
2 1.64010057623E+01 2.65872489469E-03 333.2520000000 
3 4.78942376817E-02 3.42442150793E+02 349.7009000000 
4 9.59594237682E-01 4.99109267240E-02 350.6126000000 
5 5.94057623183E-02 1.61532181430E+01 349.5936000000 
6 2.20942376817E-02 2.68874460274E+00 349.6751000000 
7 1.63942376817E-02 1.34768313786E+00 349.6694000000 
8 3.69423768171E-03 4.43778638360E+00 349.6567000000 
9 9.87387681732E-04 3.74142573384E+00 349.6539931500 

10 1.36472318275E-04 7.23507663837E+00 349.6528692900 
11 2.10223182648E-05 6.49178252157E+00 349.6529847400 

Exact Vol 0.00000000000E+00 N/A 349.6530057623 

 

 

Figure 78 is a plot of the Error At Refinement Level n vs. the Refinement Level.  After 

some initial noise at small refinement levels, the error decreases linearly on a log scale, so the 

error is decaying exponentially. 
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Figure 78: Error vs. refinement level. 
 

Figure 79  is a plot of the Error At Refinement Level n vs. the Refinement Level, for n = 

7, 8, 9, 10, 11.  The expoential fit for the error is E[n] = 0.1028 * (1/5.27)n,  which means that the 

error goes down by a factor of about (1/5.27) when the refinement level is increased by one.  

This error reduction is roughly what we expected, since each graphics cell is divided into 8 sub-

cells as the refinement level increases.  The error should go down by at most a factor of (1/8) 

when the refinement level is increased by one. 
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Figure 79: Volume error vs. refinement level. 

6.6 Geometry Error Detection 

Ensuring that the CG input is setup correctly can be very difficult.  Mercury has “gap” and 

“overlap” detection built into its graphics mesh options.  Mercury will automatically find “gaps” 

or “void” in a problem, which is defined to be any point in space where no CG cell claims 

ownership of that point.  The void and overlap detection are based on the graphics mesh 

resolution that the user requests, and Mercury samples the CG at the graphics mesh nodes.  If the 

voids or overlaps are smaller than the mesh resolution, this method will not find those errors. 

Anytime a user creates a graphics mesh, “void” detection is automatically enabled by 

calling the Mercury routine “Which CG cell is this point in” at each graphics mesh point.  If no 

CG cell claims ownership of the point, then “void” has been found. 

The overlap detection must be requested by the user since it is more expensive to check.  

For each graphics mesh point, the algorithm loops over all CG cells and asks if the CG cell 
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thinks it owns that point in space.  If more than one CG cell claims ownership of the point, then 

“overlapping cells” have been found. 

Figure 80 is a simple example of two red Uranium spheres that are overlapping.  We have 

a blue “void” sphere that has been excluded from the green Air sphere.  The user must decide if 

the “void” is correct or not.  For example, in this problem, we have a vacuum boundary condition 

around the green Air sphere, so it is correct to have “void” outside of the green sphere.  But we 

do not have a boundary condition for the small internal blue “void” sphere, so this is a geometry 

setup error. 

 

Figure 80:  (a) All materials are shown.  (b) only “void” and “overlapping_cells” are 

shown. 
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The code gives a printout of the mass and volume of all materials in the problem, 

including any “void” or “overlapping_cells” found.  Here is an example of the output for this test 

problem: 

 

Material Uranium            Mass 2.0408300111e+03 Volume 5.4451174255e+01 
Material Air                Mass 2.3926665283e+00 Volume 1.9938887736e+03 
Material void               Mass 0.0000000000e+00 Volume 3.2463340822e+03 
Material overlapping_cells  Mass 0.0000000000e+00 Volume 2.9325969955e+01 
------------------------------------------------------------------------- 
Total                       Mass 2.0432226776e+03 Volume 5.3240000000e+03 
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6.7 Gallery 

In this section we show how visualization with VisIt has been used to aid in understanding 

and verification of code development issues. 

6.7.1 Dynamic Load Balancing 

In Figure 81 we are looking at the domain decomposition to verify that it intuitively 

makes sense.  This graphics is an octant of a supercritical Uranium sphere, so we would expect 

more work to be at the center of the sphere than farther out radially.  We see that Mercury has 

chosen a domain decomposition that balances the work in each domain [65].  This spatial 

redecomposition algorithm is discussed in detail in Section 7.4. 

 

Figure 81: (a) Uniform domain decomposition.  (b) Load balanced domain decomposition. 
In Mercury, particles are tracked in 3D.  Figure 82 shows particles colored by the domain 

that they are in.  We are applying a “cylindrical projection”; a particle has Cartesian coordinates 
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(x,y,z) which we plot at cylindrical coordinates (z, r) = (z, sqrt(x2 + y2) ).  The domain 

decomposition is varying dynamically and responding to balance the particle workload. 

 

Figure 82: Time evolution of domain decomposition. 

6.7.2 Material Interface Reconstruction 

The underlying mesh in this problem is a 2D cylindrical mesh, so we are again applying 

the “cylindrical projection” to the particle coordinates.  Figure 83 was used to verify Mercury’s 

Material Interface Reconstruction algorithm [66].   

First note the bold black line that identifies the material interface.  That line was 

calculated to be normal to the gradient of the material volume fraction.  The position of the line 

was found to match the input volume fractions of the materials in the underlying mesh.   

Next note that each particle is colored by the material that it is in.  Many iterations of 

code development followed by visualization were required to get the plot to look correct.  It was 

very easy to spot particles colored the wrong color given their location.  This type of 

visualization is extremely valuable for validating code development.  
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Figure 83: Material Interface Reconstruction 

6.7.3 Embedded Mesh in Combinatorial Geometry 

Figure 84 has two images: 

(a) Shows the combinatorial geometry with 2 embedded meshes within it.  The particles are 

colored by “region”, meaning which mesh or CG region they are in.  In this case particles are 

blue if they are in the CG (none present), green if they are in the cylindrical region (2D mesh), 

and red if they are in the cube region (3D mesh). 

(b) This is a plot colored by the CG cell index for the CG, and it also shows the 2D cylindrical 

embedded mesh, and a 3D Cartesian embedded mesh. 
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Figure 84: (a) Particles colored by region.  (b) CG and 2 embedded meshes. 
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6.7.4 Complicated Geometry Setup Verification. 

Figure 85 shows test problems where visualization was used to verify the problem setup. 

 
(a) NIF target chamber and supports.   (b) NIF target chamber and supports. 

   
(c) Fusion shield room test problem.  (d) Godel, Escher, Bach test problem.

  
 (e) Critical assembly test problem.  (f) Critical assembly test problem. 
 

Figure 85: Various test problems; visualization is used to verify correct problem setup.   
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6.7.5 Running VisIt Inline in Mercury 

In Figure 86 the VisIt graphical user interface (GUI) is shown on the left side of the image, 

while four sets of tally data are displayed in individual windows on the right side of the image.  

The screen snapshot shown in Figure 86 was obtained while the tally data was being updated in 

real-time during a Mercury simulation of a criticality problem.  This calculation is a 2-D 

axisymmetric r-z (mesh-based) model of the gedanken double-density Godiva assembly.  This 

example demonstrates the wide variety of data visualization capabilities available within VisIt.  

The two upper windows are curve plots representing the iteration histories of the instantaneous 

and averaged α (left) and Keff (right) eigenvalues.  A pseudocolor representation of the neutron 

number density (including the effects of individual particle tracks), superimposed on the outer 

boundary of the spherical assembly, is shown in the lower left window.  Finally, the lower right 

window shows the 3-D point mesh collection of the Monte Carlo particles superimposed upon 

one hemisphere of the assembly, where the color of each particle represents its kinetic energy. 
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Figure 86: Running inline VisIt within Mercury. 

6.8 Conclusions  

We have shown how VisIt is connected inline to a running Mercury Monte Carlo 

simulation for real time visualization and analysis of simulation results.  This functionality is 

invaluable for code developer verification of algorithms, user verification of problem geometry 

setup, and visualization of simulation results.  We have described our algorithm for converting 

combinatorial geometry data to mesh data for visualization with mesh based tools.  VisIt has also 

been enhanced to natively discretize and visualize CG data.  Mercury has an embedded Python 

prompt which can be used to launch and attach VisIt to Mercury and to hand VisIt Python scripts 

which contain plot commands to automatically create plots in VisIt. 
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7 Other Scalable Algorithms 

This final chapter contains some additional parallel algorithms required for Monte Carlo 

particle transport.  Sections 7.4 on Spatial Redecomposition and Section 7.5 on Domain to 

Processor Assignment are preliminary investigations of these topics and are areas for future 

research.   

The remainder of this chapter is organized as follows.  Section 7.1  discusses sourcing 

particles scalably.  The new scalable sourcing algorithm maintains reproducibly, and source 

particle random number seeds are independent of the number of processors used.  Section 7.2 

highlights scalable particle streaming communication and a scalable algorithm for deciding that 

particle streaming communication has finished.  We present scaling results of domain-

decomposed Monte Carlo particle transport up to 221=2,097,152 MPI processes.  Section 7.3 

highlights some of the generality of the Mercury particle tracker by tracking to user defined 

arbitrary surfaces.  This capability enables a user to write a C-function f(x,y,z) that is the implicit 

function definition of a surface and to use that surface in the definition of the problem geometry.  

Section 7.4 is a preliminary investigation of an alternative load balancing technique, called 

spatial redecomposition, where domains are dynamically resized to balance the particle 

workload.  Section 7.5 is a preliminary investigation of domain to processor assignment.  We 

demonstrate with simple test problems that domain to processor assignment can significantly 

affect the runtime of a calculation. 

7.1 Sourcing Particles 

In each Mercury Monte Carlo calculation, a particle source must be present that starts the 

calculation.  For a criticality eigenvalue calculation, the source should be some approximation of 
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the final converged particle distribution.  If the source distribution is closer to the converged 

distribution, then fewer iterations are required to achieve convergence.  Another type of 

calculation is called a “source” calculation in which the user specifies the particle source and 

Mercury then simulates the particle transport through the background material either 

dynamically as a function of time or statically (independent of time).  The user specifies the 

particle source distribution in terms of: time (t), position (x,y,z), energy (E), and angle (θ, φ).  

Any subset of the variables can be either correlated (up to 7 dimensional space) or uncorrelated.  

The important point from a parallel algorithms point of view is that the code is sampling some 

user defined spatial coordinate distribution, and the algorithm cannot predict where the 

coordinate will be, making it difficult to domain decompose.  The domain decomposition of the 

background materials prevents an algorithm from knowing if a particle will be on a processor 

without actually generating the coordinates of the particle and testing to see if that coordinate is 

on each processor. 

The original (non-scalable) particle sourcing algorithm would redundantly have every 

processor loop over all of the particles in the problem, generate each particle’s spatial 

coordinates according the user-requested spatial distribution, and then check to see if each 

processor owned that point in space.  This algorithm had the property that the particles were 

always generated in the same order, so the particle properties were sampled identically, 

independent of the number of processors the calculation was run on.  This feature is a desirable 

property for reproducibility.  This algorithm also has the desirable property that each particle is 

on the correct processor that owns that point in the geometry, so no communication is required.  

The problem with this algorithm is that it loops over the global number of particles, which is not 

scalable.   
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The pseudocode of the original sourcing algorithm is shown in Algorithm 3.  The 

important point to note is that the loop is over the total number of particles on all processors, so 

as the total number of particles increases, the algorithm takes longer and longer.  We want an 

algorithm that will loop over the local number of particles on each processor, so each processor 

has a constant amount of work for a weak scaling test problem. 

 

 

Figure 87 shows the difference between the outcome of the old sourcing algorithm (left) 

and the new sourcing algorithm (right).  With the old sourcing algorithm, the particles are 

already on the correct processor, at the expense of testing every particle to see if it is on each 

processor.  The new sourcing algorithm does not enforce that particles are created on the correct 

processor (the processor that owns the background geometry).  The new algorithm evenly 

divides up the source particles, making it scalable, but then requires a subsequent communication 

step to put particles on the correct processor. 

OldSourcingAlgorithm() 

   seed = UserInput.SourceSeed 

   for ( i = 0; i < totalNumGlobalParticles; i++ ) 

      particle.seed = SpawnSeed(&seed) 

      particle.coordinate = SampleSourceCoordinate(&particle.seed) 

      if ( IsOnThisProcessor(particle.coordinate) ) 

         KeepThisParticle(particle) 

Algorithm 3: Old sourcing algorithm. 
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Figure 87: Old sourcing algorithm (left) and new sourcing algorithm (right). 
 The new sourcing algorithm maintains reproducibility, but does not necessarily generate 

particles on the processor that owns that coordinate of geometry, therefore introducing a 

communication requirement to send the particle to the correct processor that owns that section of 

space.  Each particle is given a global particle number, and then each MPI rank assumes 

ownership of some range of global particle numbers.  A particle’s random number seed is 

spawned from the global particle number.  Since the particle’s global number determines its 

random number seed, which is independent of the number of processors being used, the 

algorithm is reproducible, independent of the number of processors.  After a particle has a 

random number seed, the seed is used to sample the spatial distribution of the particle.  This 

sampling may produce a coordinate that is not owned by the current processor, so the algorithm 

may produce particles on the wrong processors, which requires communication to resolve. 

 We have a scalable (and reproducible) particle sourcing algorithm (shown in Algorithm 

4), but particles may be generated on the “wrong” processor, so we need a way to communicate 

them to the correct processor.  We previously described the communication step in Chapter 5 on 

globally resolving particle locations on the correct processor.  
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NewSourcingAlgorithm() 

   // Each processor calculates myStartNumber and myEndNumber 

   (myStartNumber, myEndNumber) = GetMyParticleRange() 

   for ( i = myStartNumber; i < myEndNumber; i++ ) 

      seed = UserInput.SourceSeed + i 

      particle.seed = SpawnSeed(&seed) 

      particle.coordinate = SampleSourceCoord(&particle.seed) 

      KeepThisParticle(particle) 

 

GetMyParticleRange() 

    // This is a trivial algorithm that divides global 

    // particle numbers contiguously among numProcessors 

    // processors.  Each processor has a different value 

    // for rank, 0 <= rank < numProcessors. 

    myNumParticles = totalNumGlobalParticles / numProcessors 

    myStartNumber = rank * myNumParticles 

    remainder = totalNumGlobalParticles % numProcessors 

    if ( rank < remainder ) 

        myNumParticles++ 

        myStartNumber += rank 

    else 

        myStartNumber += remainder 

    myEndNumber = myStartNumber + myNumParticles 

    return (myStartNumber, myEndNumber) 

Algorithm 4: New scalable and reproducible sourcing algorithm. 
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7.2 Deciding That Particle Streaming Communication has Finished 

For domain decomposed Monte Carlo transport calculations, particles must be 

communicated from one processor to another when particles reach domain boundaries, see [67], 

[68], [37] and [69].  This communication is handled by buffering the particles and using non-

blocking point-to-point communication.  The local communication is inherently scalable since 

domains only couple to their nearest neighbors.  A challenging aspect of the communication is 

deciding when the calculation is finished processing all of the particles and finished 

communicating.  Particles can be created and destroyed as they are being tracked, and they are 

streaming from one processor to another, making it difficult to determine when the calculation is 

done.  We have implemented essentially the same algorithm described by Brunner and Brantley 

[70].  Brunner and Brantley count the total number of particles started and finished, but we 

simply count the total number of messages sent and received.  We chose this approach is for the 

practical reason that there are 12 places in the code where particles are created and 22 places in 

the code where particles are finished; to avoid the maintenance problem, we just count sends and 

receives.   

 The idea of the algorithm is to implement a “non-blocking” reduce and a “non-blocking” 

broadcast using tree-based point-to-point communication.  As particles are tracking, we “reduce” 

the total number of messages sent and received.  When these counts tentatively match, we 

broadcast down the tree a message to perform a blocking reduce.  Analysis of this algorithm 

predicts that it scales logarithmically (the depth of the tree), and that is logarithmic scaling we 

observe empirically.   

Figure 88 shows a weak scaling test of the time it takes to decide the calculation is done 

communicating and processing particles.  This is the exact same domain decomposed infinite 
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medium weak scaling test problem described in Section 5.2, except that particles are source 

locally instead of globally.  This calculation was run on IBM BG/Q rzuseq (same architecture as 

sequia, but 1/192 its size) up to 215=32,768 processors.  The plot is approximately linear on a 

log-linear scale, so the runtime is O(log(N)), which is what we would expect to communicate 

messages up and down a binary tree. 

 

 

Figure 88: Weak scaling test results on IBM BG/Q rzuseq, up to 215=32,768 processors.   
 

 Figure 89 shows the particle tracking time for the largest domain decomposed Monte 

Carlo particle transport calculation that has been performed with Mercury.  The is the same 

domain decomposed infinite medium weak scaling test problem described in Section 5.2, except 

in this test problem, particles are sourced locally, so we do not run the algorithm to globally 

communicate particles to the correct processor, since they are already created on the correct 

processor.  This problem tests the particle streaming communication and the “test for done” 

algorithm.  We see amazing scaling results out to 221 = 2,097,152 MPI processes.  We do not 
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know the cause of the spike in runtime at 220 processors, this calculation was only done once and 

the sequoia supercomputer was not yet in production mode. 

 

Figure 89: Tracking Time vs. Log2(Num_Processors). 
For load balanced problems, this algorithm has performed quite well, as seen in the above 

example run up to 221 processors.  But for load-imbalanced problems, we found that some 

processors were doing too much “test for done” communication and this decision algorithm was 

called over one billion times for a single cycle.  In an attempt to reduce the amount of non-

blocking reduction communication up the tree, every 1024 messages up the tree we call 

MPI_Issend() instead of MPI_Isend().  Note the double “s” in MPI_Issend().  The extra “s” 

stands for synchronous and enforces more synchronization between the sender and receiver. This 

synchronization does not allow the sender to get too far ahead of the receiver and makes the 

algorithm perform significantly better for load imbalanced problems. 

Conclusion 

We have re-implemented our “test for done” parallel algorithm to be scalable, argued that 

the theoretical runtime of the algorithm should be logarithmic, and showed the results of weak 
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scaling studies to over 2 million processors.  This work enables the code to run efficiently on 

extremely large processor counts.   

7.3 Tracking to Arbitrary Surfaces 

As part of the built in particle tracker, Mercury can track to 4th order surfaces.  4th order 

surfaces were added to support tracking to a torus, with major radius R and cross sectional minor 

radius r, which has an equation 

𝑓(𝑥, 𝑦, 𝑧) = (𝑥2 + 𝑦2 + 𝑧2 + 𝑅2 − 𝑟2)2 − 4𝑅2(𝑥2 + 𝑦2) 

The equation of a torus falls into the general class of 4th order surfaces: 
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Most of the typical problems encountered can be modeled with only second order surfaces which 

include the sphere, ellipsoid, cone and cylinder (among others). 

 Generalizing this, Mercury allows arbitrary user defined surfaces.  The user inputs the 

implicit function equation of the surface f(x,y,z) as either a python function or a C-function.  

Below is an example of how to do that for a sphere of unit radius. 

python 

def PyShere(x, y, z): 

 return x*x + y*y + z*z – 1.0 

end_python 

c_code 

double C_Sphere(double x, double y, double z) { 
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 return x*x + y*y + z*z – 1.0; } 

end_c_code 

The user may then use the following functions to define surfaces and cells: 

Surface = {(x,y,z) : f(x,y,z) = 0} 

Inside = {(x,y,z) : f(x,y,z) < 0} 

Outside = {(x,y,z) : f(x,y,z) > 0} 

Using this form to describe the surface makes it very easy to answer the question of 

whether or not any given point is inside of the surface.  We just evaluate the point in the surface 

equation and examine the sign of the answer.  The function is zero on the surface, negative 

within the surface, and positive outside of the surface.  In order to track a particle to a surface 

boundary, we must implement a numerical root solver.  Given a particle with position (x,y,z) 

going in direction (α,β,γ), we must solve for the smallest positive t such that: 

f(x + α t, y + β t, z + γ t) = 0 

Solving this equation requires a one-dimensional numerical root solver that must evaluate the 

function many times as the solver iterates to converge to a solution.  Our initial implementation 

used a python user defined function, and a significant amount of overhead exists in calling the 

python function repeatedly from the C++ root solver.  We also implemented a way for the user to 

input a C-function that is compiled into a dynamic library; this dynamic library is loaded and the 

function pointer is obtained to call that function from the numerical root solver.  Much less 

overhead exists in calling the C-function compared to the python function, so the C-function is 

much faster than the python function. 
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 We set up a test problem of a single sphere and compared our built in sphere tracker to 

both the python sphere and the C-sphere.  See Table 12 for the results of both Samplings Points 

(which is just evaluating the function) and Tracking (which is the numerical root solve).  We can 

see that when just sampling points, the user defined C-function (1.8 seconds) is slightly faster 

than the built in evaluate (2.0 seconds), but the overhead of calling a python function is too high 

and the python is slower (5.1 seconds).  The built in evaluation requires more memory 

indirection to retrieve the equation coefficient from memory and that probably explains why it is 

slightly slower than the C-function evaluation, where the coefficients are directly stored in the 

function definition.  For the Tracking column, our built in quadratic equation solver (2.2 

seconds) is faster than the C-numerical root solver (4.7 seconds), and in the case of the Python 

function (86.2 seconds), the numerical solve is 18 times slower than the C-function because of 

the overhead of calling the python function evaluation so many times. 

Table 12: Timing results for sphere test problem. 

 Sampling Points Tracking 

Built In Quadratic Solver 2.0 2.2 

User Defined in Python 5.1 86.2 

User Defined in C 1.8 4.7 

 

The next test problem exercises tracking to a torus.  It has four tori as shown in Figure 90.  

Solving a 4th order equation explicitly requires a large number of floating point operations, so we 

see that we can solve it faster using a numerical root solver (17.1 seconds for explicit solve vs. 

8.2 seconds for the numerical solve; the excessive python overhead comes in at 477.5 seconds).  

The extra memory indirection required to retrieve the equation coefficients for the built in torus 
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evaluation (64.7 seconds) makes it slower than just directly evaluating the function using the 

user defined function (37.8 seconds), the excessive python overhead comes in at 351.6 seconds..  

See Table 13 for timing data for the Four-Torus test problem. 

 

Figure 90: 4-Torus test problem. 
Table 13: Timing results for the 4-Torus test problem. 

 Sampling Points Tracking 

Built In 4th Order Solver 64.7 17.1 

User Defined in Python 351.6 477.5 

User Defined in C 37.8 8.2 

 

We have used the generality of the user defined arbitrary surfaces to track to extruded 

surfaces, surfaces of revolution, and other implicitly defined shapes.  This feature also works 

with domain decomposition; see Figure 91 for a gallery of examples.  When the figure is all red, 

we are showing the inside of the surface.  When the surface is multi-colored, we are showing the 

domain decomposition of the surface.  The implicit function definition is stored redundantly on 

all processors, but particles are distributed and localized to domains. 
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Figure 91: Gallery of user defined implicit functions. 

7.4 Spatial Redecomposition 

As a Monte Carlo particle transport calculation evolves over time, the particle distribution 

and workload also changes.  This creates the requirement of some type of dynamic load 

balancing, which can respond to the current particle workload and reassign processing resources 

where they are needed the most.  See Figure 92 for an example of an evolving workload as a 

function of time. 

     

Figure 92: Evolving workload as a function of time. 
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By dynamically resizing domains to attempt to balance the workload in each domain, we 

can make the calculation run faster.  Figure 93 shows an octant of a Godiva Uranium sphere 

criticality problem.  The uniform domain decomposition is only 28% efficient; some domains 

have too much or too little work.  The spatially-weighted domain decomposition is 85% 

efficient; the algorithm attempts to resize domains to balance the particle workload. 

                      

Figure 93: Uniform (left) vs. spatially weighted (right) domain decomposition. 
The way the algorithm works is by summing the work along one coordinate axis and then 

placing domain decomposition planes to divide the workload evenly along that coordinate axis.  

As a result each partition has about the same amount of work.  This process is repeated 

independently in each partition along a different coordinate axis.  Those sub-partitions now have 

about the same amount of work, and a third and final partitioning step is performed along the 

remaining coordinate axis.  Figure 94 shows an illustration of the partitioning algorithm in 1 

dimension. 
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Figure 94: The load balancing algorithm finds new domain boundaries so that each domain 
has the same amount of work. 

Figure 95 shows an example of the partitioning algorithm load balancing a 2D problem.  

The first step is to balance the work along the vertical axis.  This process creates three partitions, 

each with about the same amount of work.  Next, each of these partitions is balanced 

independently in the horizontal direction, shown on the right of Figure 95. 

        

Figure 95: 2D example of partitioning algorithm. 
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In the following example, we have two strong particle sources at opposite ends of the 

problem.  This test problem is a contrived example to have a concentration of work in the lower 

left corner in the beginning of the problem and a concentration of work in the upper right corner 

at the end of the problem, as seen in Figure 96.  The domains resize according to the particle 

workload.  Figure 97 shows small domains in the lower left corner in the beginning of the 

problem, when there is a large concentration of work there.  Later in time, we have large 

domains in the lower left corner and small domains in the upper right corner as work shifts there. 

  

Figure 96: Source Strength (left) and Source positions (right). 

 

         Cycle 11                      Cycle 481                      Cycle 581                       Cycle 611 

Figure 97: Domain boundaries adjust to balance particle workload. 
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Figure 98 shows a comparison of running the same problem (Spherical Shield Sourced Problem 

from Section 3.5.2) four different ways.  Each run used 16 processors. 

1. Fixed Decomposition: 16 domains, no load balancing. 

2. Spatial Redecomposition: 16 domains that are allowed to resize to balance the 

workload. 

3. Fixed Replication: 4 domains, each replicated 4 times, no load balancing. 

4. Dynamic Replication: 4 domains, the replication level is allowed to change to balance 

workload. 

Fixed Decomposition runs the slowest, because the most worked processor controls the 

overall runtime.  A concentration of work exists in the lower left corner of this problem.  The 

processor in the lower left corner has the most work, so the efficiency = “ave/max” is minimized 

and run time is maximized.  Fixed replication runs somewhat faster, because the size of the 

domains are increased and the workload is spread evenly over four replications.  Spatial 

Redecomposition runs the fastest, because it has the most degrees of freedom to balance the 

workload.  With dynamic replication, we have 16 processors that we need to assign to domains, 

so assigning an entire processor to a domain is a relatively large granularity movement to 

balance the workload.  With dynamic redecomposition, we move individual domain boundaries 

by one zone at a time.  As a result, we have finer granularity to balance the workload, and we see 

the highest average efficiency and the lowest total runtime.   
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Figure 98: Comparison of load balancing methods. 
 Many problems have a non-uniform distribution of particles in space and time.  This 

creates the need for a dynamic load balancing algorithm.  Two dynamic load balancing methods 

have been implemented: dynamic replication (discussed in Chapter 3) and dynamic spatial 

redecomposition (discussed in this section).  Both methods can typically speed up a problem by a 

factor of 2-3.  Spatial redecomposition can be more effective since it has finer grained control by 

moving zones instead of processors.  Future work involves scaling these methods to large 

processor counts and combining the two methods, which gives more degrees of freedom to 

optimize over which should lead to improved load balance. 
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7.5 Domain to Processor Assignment 

When running large scale parallel, domain decomposed Monte Carlo particle transport 

calculations, the assignment of domains to processors is important for load balancing and for 

minimizing the inter-processor particle communication.  These factors are important for using a 

supercomputer efficiently and finishing calculations as quickly as possible.  In this section, we 

examine the impact of various assignments of domains to processors and present an algorithm 

for minimizing inter-processor communication.  Other high performance computing applications 

may only have one domain per processor, but it is common for Mercury to have more than one 

domain per processor, and we want to localize the domains assigned to the same processor. 

Introduction 

Currently we simply assign domains to processors via an “unintelligent” round-robin 

process.  The assignment is not based on any criterion that tries to optimize anything; adjacency 

information is being ignored.  By investing some effort in defining to which processor each 

domain is assigned, we can dramatically speed up the code.  In this case, by intelligently defining 

the domain to processor mapping, and making zero changes to the rest of the code, we can 

achieve a 10-20% speedup in code performance.   More investigation needs to be done for large 

processor counts; presumably the speedup will increase with processor count. 

Example 1: Checkerboard 

In this first example, we need to assign 256 domains to two processors.  In order to 

minimize the surface area of domain boundaries on different processors, we should group 

domains together that are assigned to the same processor.  We look at two basic methods: (a) 

“Short Stride” meaning we assign domains “round-robin” to processors, and (b) “Long Stride” 
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meaning we assign the first half of the domains to one processor, and the second half to the other 

processor.  The Short Stride method requires the most amount of particle streaming 

communication, since as a particle streams through the problem, it must be communicated at 

every domain boundary crossing.  The Long Stride method is optimal, since it requires the least 

communication as particle stream through the problem. 

Figure 99 shows 16 x 16 domains, run on 2 processors, with blue domains assigned to 

processor 0 and red domains assigned to processor 1.  This test problem is an infinite medium 

(reflecting boundary conditions) double density Uranium-235, pseudo-dynamic alpha eigenvalue 

criticality calculation, with 100,000 particles. 

 

Figure 99:  Short Stride (left), Long Stride (right). 

Table 14 shows the run time for various numbers of zones per domain.  As the number of 

zones per domain increases, more time is spent tracking to zone boundaries.  As a result the total 

time increases, and a smaller fraction of the time is spent doing communication.  The speedup 

therefore decreases with more zones per domain. 
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Table 14: Particle Tracking Time for Short Stride vs. Long Stride. 

 Particle Tracking Time (sec)  
Domain size Short stride Long stride % speedup 
  2 x   2 zones, 2D 114  88 23% 
  4 x   4 zones, 2D 197 162 18% 
  8 x   8 zones, 2D 386 334 13% 
16 x 16 zones, 2D 805 695 13% 
  2 x   2 zones, 3D  28  18 36% 
  4 x   4 zones, 3D  57  35 39% 
  8 x   8 zones, 3D 110  70 36% 
16 x 16 zones, 3D 153 132 14% 
32 x 32 zones, 3D 290 275  5% 
 

Example 2: Unequal Volumes 

 The next example shown in Figure 100 investigates the effect that 2D cylindrical 

coordinates have on the problem.  Both (a) 1 x 16 and (b) 16 x 1 appear to be load balanced.  

However, with the cylindrical geometry, these domains are revolved around the horizontal axis, 

so for a fixed area, the revolved volume gets larger with larger radial (vertical) component.  The 

problem we are running is homogeneous with reflecting boundary conditions, so the 

computational workload is proportional to the domain volume.  Therefore (a) 1 x 16 is not load 

balanced, since the volume of the domains assigned to each processor is different, while (b) 16 x 

1 is load balanced since all the volumes of domains assigned to each processor is the same.  Also 

(c) 4 x 4 is not load balanced, since the volume of domains assigned to each processor are 

different, while (d) Diagonal is load balanced, since the volume of domains assigned to each 

processor is the same. 
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(a) 1 x 16     (b) 16 x 1 

 

  (c) 4 x 4     (d) Diagonal 

Figure 100: Comparison of various domain decompositions. 
See Table 15 for the wall time results for running the various domain to processor assignments. 

Table 15: Comparison of runtimes of various assignments of domains to processors. 
 Particle Tracking Wall time in seconds.  256 domains, 16 processors.        

(a) 1x16 (b) 16x1 (c) 4x4 (d) Diagonal 

Cylindrical 2D 35 19 27 24 

Cartesian   3D 5.2 3.7 3.3 5.3 

 

The numbers in Table 15 (for 2D cylindrical) are hard to interpret since there is more 

than one effect occuring on here.  The problem is that we are running the R-Z cylindrical 

geometry, the axis of the cylinder is the horizontal axis and the vertical axis is the radial axis.  

The volume of a domain is “r ∆r ∆z” instead of the Cartesian area “∆x ∆y”, so we have an extra 
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radial factor.  Looking at the pictures is misleading.  We are modeling a homogeneous infinite 

slab of material, so the computational work is proportional to the volume.  We have different 

volumes assigned to processors, hence different workloads per processor, so the calculation is 

not load balanced. (Load balancing is turned off).  Note that the 1x16 case has the largest 

discrepancy in the processor volumes and hence runs the slowest.  Followed by 4x4, the second 

slowest.  But 16x1 has equal volume per processor and is the fastest.  “diagonal” also has equal 

volume per processor, but has more communicating surface area and hence runs slower.  So it is 

a fair comparison to compare 16x1 to “diagonal”, since both problems are load balanced, the 

only difference is the communication, which is what we are studying in this section.   

We also ran this problem in 3D Cartesian space, with reflecting boundary conditions so 

all processors have the same volume and hence the same workload, now the only difference is in 

the communicating surface area, which is the effect we indend to study in this section.  Now we 

see that 1x16 is slower than 16x1.  This is because there is more communicating surface area in 

the 1x16 case.  4x4 runs the fastest, since the communicating surface area is minimized.  

Diagonal runs the slowest since it has the largest communicating surface area. 

Conclusion 

 This brief investigation was meant to demonstrate that the assignment of domains to 

processors matters and can significantly affect the particle communication time and hence the 

overall runtime of the problem.  We illustrated that a simple “round-robin” assignment of 

domains to processors may not be optimal and with a small amount of work, a better assignment 

can be realized.  This algorithm will be left for future work, where we intend to do a scaling 
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study to large processor counts studying the effect of domain to processor mapping, and look for 

optimal mappings which minimize total run time. 

177 
 



Conclusion 

 In this dissertation, we described the parallel algorithms necessary to efficiently run 

domain decomposed Monte Carlo particle transport on large numbers of processors. 

 Chapter 2 described how to domain decompose CSG for Monte Carlo particle transport.  

Many mesh-based physics simulations have been parallelized via domain decomposition, but as 

far as we know, Mercury was the first CSG Monte Carlo particle transport code to be domain 

decomposed.  Domain decomposition enables truly large calculations.  Without domain 

decomposition, the size of the calculation is limited by what can fit in the memory of one node of 

a computer.  With domain decomposition, you are only limited by the global memory of the 

entire supercomputer. 

 Chapter 3 presented a load balancing algorithm for domain decomposed problems.  This 

novel algorithm has significantly improved the performance of almost all of our Mercury 

simulations.  Performance improvements of a factor of 2-3 compared to not load balancing are 

common.  Some aspects of this algorithm are not scalable and future research will address this 

issue. 

 Chapter 4 described a scalable homogenous load balancing algorithm in which any 

processor can operate on any of the particles.  This is the case in particle parallel (domain 

replicated) problems.  This algorithm has O(log(N)) communication steps and is therefore 

scalable.  We presented a scaling study of this algorithm up to 221 = 2,097,152 MPI processes on 

the IBM BG/Q Sequoia supercomputer that agreed with our theoretical predictions. 
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 Chapter 5 described a scalable global particle find algorithm.  Particles may be sourced 

on a processor that does not own the background geometry required to process the particle.  So 

the particles must be communicated to the correct processor that owns the background geometry.  

A hypercube graph was constructed over the processors to efficiently communicate particles 

from processor to processor, ultimately enabling particles to make it to the correct processor. 

 Chapter 6 considers the problem of visualizing CSG, given mesh-based visualization 

tools.  Therefore, the problem becomes how to convert the CSG to a mesh.  We implemented 

several algorithms for this, including: 

• recursive zone sampling to calculate volume fractions 

• numerical integration techniques to calculate volume fractions 

• conformal mesh generation by moving mesh nodes onto the CSG surface 

As an alternative to converting the CSG to a mesh, we can directly visualize the CSG using in-

line ray casting. 

 Chapter 7 covered some remaining parallel algorithms and suggested two areas for future 

research: load balancing via spatial redecomposition and domain to processor assignment.  We 

presented a scalable and reproducible particle sourcing algorithm.  We presented a scaling study 

up to 221 = 2,097,152 MPI processes, which exercises domain decomposed particle streaming 

communication and the algorithm to decide if particle streaming communication has finished. 

 The major contributions of this dissertation are (by Chapter): 

1. Motivated the need for scalable algorithms.  Non-scalable algorithms are not feasible 

and parallel overhead takes significantly longer than useful computation. 
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2. Designed and implemented domain decomposition for combinatorial geometry. 

a. Enables extremely large cell counts: ran 89 million cell problem. 

3. Designed and implemented a domain decomposed load balancing algorithm. 

a. A domain’s replication level is determined each cycle based on the particle 

workload relative to the other domains. 

b. Some aspects of this algorithm are not scalable and will be addressed in future 

research. 

4. Designed, implemented and proved correct a scalable homogeneous load balancing 

algorithm. 

a. Demonstrated scalability of this algorithm up to 2 million MPI processes. 

b. This algorithm is used for particle parallelism (domain replication) only. 

5. Designed, implemented and proved correct a scalable global particle find algorithm. 

a. Relying on this algorithm allows for scalable particle sourcing. 

6. Implemented several novel methods for visualizing combinatorial geometry. 

a. Convert CG to mesh via recursive sampling, numerical integration, or 

conformal mesh generation.  Or visualize geometry via in-line ray casting. 

7. Other Scalable Algorithms: 

a. The new particle sourcing algorithm is scalable, and particle random number 

seeds are insensitive to the number of processors used. 
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b. Demonstrated scalability of particle streaming communication and test for 

done algorithm up to 2 million MPI processes. 

c. Added the ability to track to arbitrary user defined surfaces for flexibility in 

problem definition. 

d. Demonstrated spatial redecomposition as an alternative load balancing 

technique.  More research should be done in this area. 

e. Demonstrated runtime sensitivity to domain to processor assignment.  More 

research should be done in this area. 

 These algorithms form the foundation for scalable domain decomposed Monte Carlo 

particle transport and are used in the production quality software tool Mercury developed at 

LLNL. 

 Table 16 shows the computational complexity of the old run time and the new run time of 

various algorithms in Mercury.  This table assumes weak scaling in which the calculation has 

constant work per processor; if the number of processors is doubled, the number of particles is 

also doubled. 

Table 16: Runtimes of old and new parallel algorithms. 

Algorithm        (n = number of processors) Old Run 
Time 

New Run Time 

Particle Sourcing Θ(n) Θ (1) 

Global particle find: Cartesian Domains Θ (n) Θ ( (log n) (log log n) ) 

Load Balancing within a workgroup Θ (n2) Θ (log n) 

Test for done with particle communication Θ (n2) Θ (log n) 
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 We have eliminated non-scalable algorithms from Mercury and we are left with 

algorithms that are at most proportional to powers of log(n), which was the goal of this 

dissertation. 
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